p-adic valuations of polynomials

Eric Rowland

University of Liège

2015 January 8

Eric Rowland (ULg)

For us, p is a prime.

Definition

Let $\nu_p(n)$ be the exponent of the largest power of *p* dividing *n*.

 $\nu_5(75) = 2$ since $75 = 3^1 \cdot 5^2$.

By convention, $\nu_p(0) = \infty$.

Question

Let f(x) be an integer-valued polynomial. What does the sequence $\nu_p(f(n))_{n\geq 0}$ look like?

The ruler sequence

It satisfies a recurrence:

$$u_2(2n+0) = 1 + \nu_2(n)$$

 $u_2(2n+1) = 0$

 $\nu_2(an+b)_{n\geq 0}$ is an arithmetic subsequence of the ruler sequence.

The sequence $\nu_2(n^2+1)_{n\geq 0}$ is

 $010101010101010101010101010101010101 \cdots .$

This sequence is periodic:

- If *n* is even, then $n^2 + 1$ is odd.
- If *n* is odd, then $n^2 + 1 \equiv 2 \mod 4$.

$$\nu_{2}(n^{2}+2)_{n\geq 0} = 1010101010101010100$$
$$\cdots$$
$$\nu_{2}(n^{2}+3)_{n\geq 0} = 020202020202020202\cdots$$
$$\nu_{2}(n^{2}+4)_{n\geq 0} = 20302030203020302030\cdots$$
$$\nu_{2}(n^{2}+5)_{n\geq 0} = 01010101010101010\cdots$$
$$\nu_{2}(n^{2}+6)_{n\geq 0} = 1010101010101010\cdots$$

But $\nu_2(n^2 + 7)_{n \ge 0}$ is

 $03040503030704030304060303050403\cdots$.

Is it unbounded? $\nu_2(n^2 + 7) = 3$ if and only if $n \equiv 1_2, 111_2 \mod 8$. $\nu_2(n^2 + 7) = 4$ if and only if $n \equiv 1101_2, 11_2 \mod 16$. $\nu_2(n^2 + 7) = 5$ if and only if $n \equiv 101_2, 11011_2 \mod 32$. $\nu_2(n^2 + 7) = 6$ if and only if $n \equiv 10101_2, 101011_2 \mod 64$.

Convergence

It seems $\nu_2(n^2 + 7) = \alpha$ if and only if $n \equiv r, s \mod 2^{\alpha}$.

α	r	S
3	1 ₂	111 ₂
4	1101 ₂	11 ₂
5	101 ₂	11011 ₂
6	10101 ₂	101011 ₂
7	1110101 ₂	1011 ₂
8	110101 ₂	11001011 ₂
9	110110101 ₂	1001011 ₂
10	1010110101 ₂	101001011 ₂
11	10010110101 ₂	1101001011 ₂
12	100010110101 ₂	11101001011 ₂
13	1000010110101 ₂	111101001011 ₂
14	10000010110101 ₂	1111101001011 ₂

These two sequences are converging to 2-adic integers.

p-adic numbers

For a prime *p*, define the *p*-adic absolute value of a rational number by

$$\left. \frac{a}{b} \right|_p = \frac{1}{p^{\nu_p(a) - \nu_p(b)}}$$

and $|0|_{p} = 0$.

 $|2^{m}|_{2} = \frac{1}{2^{m}}$. $\lim_{m \to \infty} 2^{m} = 0$. In the *p*-adic absolute value, *n* is small if it is highly divisible by *p*.

Definition

The set \mathbb{Q}_p of *p*-adic numbers is the completion of \mathbb{Q} w.r.t. $|\cdot|_p$.

A *p*-adic number can be written $\sum_{i \ge i_0} d_i p^i$, where $d_i \in \{0, 1, \dots, p-1\}$.

The set of \mathbb{Z}_p of *p*-adic integers consists of elements $\sum d_i p^i$.

Convergence

It seems $\nu_2(n^2 + 7) = \alpha$ if and only if $n \equiv r, s \mod 2^{\alpha}$.

α	r	S
3	1 ₂	111 ₂
4	1101 ₂	11 ₂
5	101 ₂	11011 ₂
6	10101 ₂	101011 ₂
7	1110101 ₂	1011 ₂
8	110101 ₂	11001011 ₂
9	110110101 ₂	1001011 ₂
10	1010110101 ₂	101001011 ₂
11	10010110101 ₂	1101001011 ₂
12	100010110101 ₂	11101001011 ₂
13	1000010110101 ₂	111101001011 ₂
14	10000010110101 ₂	1111101001011 ₂

What 2-adic integers are *r*, *s* converging to?

Eric Rowland (ULg)

r, s make $n^2 + 7$ highly divisible by 2. That is, $n^2 + 7 \approx 0$.

Maybe *r*, *s* are approximations to solutions of $x^2 + 7 = 0$.

In fact $x^2 + 7 = 0$ has two solutions in \mathbb{Z}_2 (by Hensel's lemma). Call them $\pm \sqrt{-7} \in \mathbb{Z}_2$.

Then $\nu_2(n^2 + 7)$ is large for integer $n \approx \pm \sqrt{-7}$, just as $\nu_2(n)$ is large for $n \approx 0$ (*n* highly divisible by 2).

General principle: The *p*-adic roots of f(x) determine the behavior of $\nu_p(f(n))$.

Proposition

Let f(x) be an integer-valued polynomial. The sequence $\nu_p(f(n))_{n\geq 0}$ is bounded if and only if f(x) has no roots in \mathbb{Z}_p .

 $x^2 + 1$ has no roots in \mathbb{Z}_2 (since it has no roots modulo 4). $\nu_2(n^2 + 1)$ is bounded.

 $x^2 + 7$ does have roots in \mathbb{Z}_2 . $\nu_2(n^2 + 7)$ is unbounded.

Regular sequences

What is the structure of $\nu_p(f(n))_{n\geq 0}$?

For f(x) = x, recall

$$u_2(2n+0) = 1 + \nu_2(n)$$

 $u_2(2n+1) = 0.$

This is an example of a 2-regular sequence.

Definition (Allouche–Shallit 1992)

An integer sequence $s(n)_{n\geq 0}$ is *k*-regular if the \mathbb{Z} -module generated by

$$\{s(k^e n + r)_{n \ge 0} \mid e \ge 0, \, 0 \le r \le k^e - 1\}.$$

is finitely generated.

Eric Rowland (ULg)

Counting nonzero binomial coefficients modulo 8

Let $s(n) = |\{0 \le m \le n : \binom{n}{m} \neq 0 \mod 8\}|.$

1 2 3 4 5 6 7 8 5 10 9 12 11 14 14 16 5 10 13 20 13 18 20 24 \cdots

$$s(2n+1) = 2s(n)$$

$$s(4n+0) = s(2n)$$

$$s(8n+2) = -2s(n) + 2s(2n) + s(4n+2)$$

$$s(8n+6) = 2s(4n+2)$$

p-regularity of valuation sequences

k-regular sequences are closed under addition and periodic indexing.

Since $\nu_2(n+1)_{n\geq 0}$ is 2-regular, the following is 2-regular.

$$\nu_2 \left(74(n+1)^9(6n+5)^2(9n-7)^4\right)_{n\geq 0}$$

Each periodic sequence is *k*-regular for every *k*. So $\nu_2(n^2 + 1)_{n \ge 0} = 0\,1\,0\,1\,0\,1\,\cdots$ is 2-regular.

Is $\nu_2(n^2 + 7)_{n \ge 0}$ a 2-regular sequence? (Does it satisfy a recurrence?) 03040503030704030304060303050403...

Theorem (Bell 2007)

If f(x) is a polynomial, $\nu_p(f(n))$ is p-regular if and only if f(x) factors as

(product of linear polynomials over \mathbb{Q}) \cdot (polynomial with no roots in \mathbb{Z}_p).

Eric Rowland (ULg)

p-adic valuations of polynomials

When $\nu_{\rho}(f(n))_{n\geq 0}$ is periodic, what is its (minimal) period length?

sequence	period length
$\nu_2(n^2+1)_{n\geq 0}=01010101\cdots$	2
$\nu_2(n^2+2)_{n\geq 0} = 10101010\cdots$	2
$\nu_2(n^2+3)_{n\geq 0} = 02020202\cdots$	2
$\nu_2(n^2+4)_{n>0} = 20302030\cdots$	4
$\nu_2(n^2+5)_{n>0} = 01010101 \cdots$	2
$\nu_2(n^2+6)_{n\geq 0}^{-}=10101010\cdots$	2

A sequence with period length 8:

$$\nu_2(n^2+16)_{n\geq 0}=4020502040205020\cdots$$

The period length

Again the roots of f(x) determine the behavior of $\nu_p(f(n))$. f(x) has no roots in \mathbb{Z}_p (otherwise $\nu_p(f(n))$ would be unbounded).

Theorem (Medina–Moll–Rowland 2015)

Let $f(x) \in \mathbb{Z}[x]$ be a monic polynomial that is irreducible over \mathbb{Z}_p . Let $\alpha \ge 1$ be minimal such that $f(x) \equiv 0 \mod p^{\alpha}$ has no solutions. Then $\nu_p(f(n))_{n\ge 0}$ is periodic with period length $p^{\lceil \frac{\alpha-1}{\deg f}\rceil}$.

For example, let p = 2 and $f(x) = x^3 + 8x^2 + 256x + 128$.

 $f(x) \equiv 0 \mod 2^8$ has no solutions; $f(x) \equiv 0 \mod 2^7$ does, so $\alpha = 8$. Therefore the period length is $p^{\lceil \frac{\alpha-1}{\deg 7} \rceil} = 2^3$:

 $\nu_2(f(n))_{n\geq 0} = 7030603070306030\cdots$