k-automatic sets of rational numbers

Eric Rowland¹ Jeffrey Shallit²

¹LaCIM, Université du Québec à Montréal

²University of Waterloo

March 5, 2012

Notation

Let $k \ge 2$ be an integer.

Given a word
$$w = a_1 a_2 \cdots a_t \in \Sigma_k^*$$
, let

$$[w]_k = \sum_{1 \le i \le t} a_i k^{t-i}.$$

For example, $[101011]_2 = 43$.

Also, $[0101011]_2 = 43$.

Given a language $L \subseteq \Sigma_k^*$, define

$$[L]_k = \{[w]_k : w \in L\}$$

to be the set of integers it represents.

Definition

A set $S \subseteq \mathbb{N}$ is *k*-automatic if there exists a regular language $L \subseteq \Sigma_k^*$ such that $S = [L]_k$.

Representing rationals

We allow the rational number p/q to be represented by *any* pair of integers (p', q') with p/q = p'/q'.

We represent (p, q) as a word $w = [a_1, b_1][a_2, b_2] \cdots [a_n, b_n]$ over Σ_k^2 .

Define projection maps π_1 , π_2 as follows:

$$\pi_1(w) = a_1 a_2 \cdots a_n; \qquad \pi_2(w) = b_1 b_2 \cdots b_n.$$

Given a word $w \in (\Sigma_k^2)^*$ with $[\pi_2(w)]_k \neq 0$, define
 $\operatorname{quo}_k(w) := \frac{[\pi_1(w)]_k}{[\pi_2(w)]_k}.$

Example

If w = [1,0][0,1][1,0][0,0][1,1][1,0], then $quo_2(w) = 43/18$. Also, $quo_2([0,0]w) = 43/18$. Also, $quo_2(w[0,0]) = 86/36 = 43/18$. Given a language $L \subseteq (\Sigma_k^2)^*$ such that $[\pi_2(w)]_k \neq 0$ for all $w \in L$, define

$$\operatorname{quo}_k(L) := {\operatorname{quo}_k(w) : w \in L}$$

to be the set of rationals it represents.

Definition

A set $S \subseteq \mathbb{Q}^{\geq 0}$ is *k*-automatic if there exists a regular language $L \subseteq (\Sigma_k^2)^*$ such that $S = quo_k(L)$.

We write that *S* is (\mathbb{N}, k) -automatic or (\mathbb{Q}, k) -automatic when it is necessary to distinguish the two notations of automaticity.

Example

Let k = 2, and let $A = \{[0, 0], [0, 1], [1, 0], [1, 1]\}$. Consider *L* defined by the regular expression $A^*\{[0, 1], [1, 1]\}A^*$. Then $quo_k(L) = \mathbb{Q}^{\geq 0}$.

Example

Consider the regular language

$$L = \{ w \in (\Sigma_k^2)^* : \pi_1(w) \in \Sigma_k^* \text{ and } [\pi_2(w)]_k = 1 \}.$$

Then $quo_k(L) = \mathbb{N}$.

Example

Let *L* be defined by the regular expression $[0, 1]{[0, 0], [2, 0]}^*$.

Then $quo_3(L)$ is the 3-*adic Cantor set*, the set of all rational numbers in the "middle-thirds" Cantor set whose denominator is a power of 3.

Example

Loxton and van der Poorten (1987) were interested in the set $T = \{0, 1, 3, 4, 5, 11, 12, 13, ...\}$ of all non-negative integers that can be represented using only the digits 0, 1, -1 in base 4.

The set $S = \{p/q : p, q \in T\}$ is 4-automatic. They showed that *S* contains every odd positive integer.

Let β be a non-negative real number and define

$$L_{\leq \beta} = \{ w \in (\Sigma_k^2)^* : \operatorname{quo}_k(w) \leq \beta \},$$

and analogously for the other relations $<, =, \ge, >, \ne$. Then $L_{\le \beta}$ (resp., $L_{<\beta}$, $L_{=\beta}$, $L_{\ge \beta}$, $L_{>\beta}$) is regular if and only if β is a rational number.

Let $\alpha \in \mathbb{Q}^{\geq 0}$. The class of k-automatic sets of rational numbers is closed under the following operations:

(i) union; (ii) $S \rightarrow S + \alpha := \{x + \alpha : x \in S\};$ (iii) $S \rightarrow S - \alpha := \{\max(x - \alpha, 0) : x \in S\};$ (iv) $S \rightarrow \alpha - S := \{\max(\alpha - x, 0) : x \in S\};$ (v) $S \rightarrow \alpha S := \{\alpha x : x \in S\};$ (vi) $S \rightarrow \{1/x : x \in S \setminus \{0\}\}.$

Unlike the class of (\mathbb{N}, k) -automatic sets, the class of (\mathbb{Q}, k) -automatic sets is not closed under the operations of intersection or complement.

Theorem

Let
$$S_1 = \{(k^n - 1)/(k^m - 1) : 1 \le m < n\}$$
 and $S_2 = \mathbb{N}$.
Then $S_1 \cap S_2$ is not *k*-automatic.

Let $S \subseteq \mathbb{N}$. Then S is (\mathbb{N}, k) -automatic if and only if it is (\mathbb{Q}, k) -automatic.

The proof uses a result which is interesting in its own right.

We say a set $S \subseteq \mathbb{N}$ is *ultimately periodic* if there exist integers $n_0 \ge 0, p \ge 1$ such that $n \in S \iff n + p \in S$, provided $n \ge n_0$.

Example

 $\{0,1,5\}$ is ultimately periodic (as is every finite set). $\{0,1,5,6,10,11,15,16,20,21,\dots\}$ is ultimately periodic.

Finite sets of primes

Let $pd(n) = \{p \in \mathbb{P} : p \mid n\}$. For example, $pd(60) = \{2, 3, 5\}$. Given a subset $D \subset \mathbb{P}$, let $\pi(D) = \{n \ge 1 : pd(n) \subseteq D\}$. Finally, let $\nu_k(n) := \max\{i : k^i \mid n\}$.

Theorem

Let $D \subseteq \mathbb{P}$ be a finite set of primes, and let $S \subseteq \pi(D)$. Then S is k-automatic if and only if

1
$$F := \{ rac{s}{k^{
u_k(s)}} : s \in S \}$$
 is finite, and

2 for all $f \in F$ the set $U_f = \{i : k^i f \in S\}$ is ultimately periodic.

Example

The set $\{1, 8, 21\} \cup \{3 \cdot 2^{5j} : j \in \mathbb{N}\} \cup \{3 \cdot 2^{5j+1} : j \in \mathbb{N}\}$ is 2-automatic. The set $\{6^j : j \in \mathbb{N}\}$ is not 2-automatic.

Eric Rowland (LaCIM)

k-automatic sets of rational numbers

Let $(p, q)_k$ be the representation of (p, q) in $(\Sigma_k^2)^*$ with no leading [0, 0].

Remark

The following languages are not context-free.

•
$$L_d = \{(p,q)_k : q \mid p\}$$

•
$$L_r = \{(p,q)_k : \gcd(p,q) > 1\}$$

•
$$L_g = \{(p,q)_k : \gcd(p,q) = 1\}$$

Since the condition gcd(p, q) = 1 cannot be checked by automata, this is another reason why we don't only accept "reduced" representations.

The following problems are recursively solvable.

- Given a DFA M, a rational number α, and a relation ⊲ chosen from =, ≠, <, ≤, >, ≥, does there exist x ∈ quo_k(L(M)) with x ⊲ α?
- Given a DFA M and an integer k, is $quo_k(L(M))$ infinite?

The second question is *not* the same as asking if L(M) is infinite, since a number may have infinitely many representations.

Given a regular language $L \subseteq (\Sigma_k^2)^*$, the following are decidable.

- $quo_k(L) \subseteq \mathbb{N}$.
- $quo_k(L) = \mathbb{N}$.
- $quo_k(L) \setminus \mathbb{N}$ is finite.

Open problem

Is it decidable whether $quo_k(L) = \mathbb{Q}^{\geq 0}$?