Words generated by cellular automata

Eric Rowland

University of Waterloo

(soon to be LaCIM)

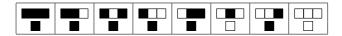
November 25, 2011

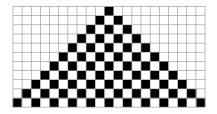
Introduction to cellular automata

- 2 Row words
- 3 Column words
- 4 The number of nonzero cells on row *n*
- 5 Boundary words

One-dimensional cellular automata

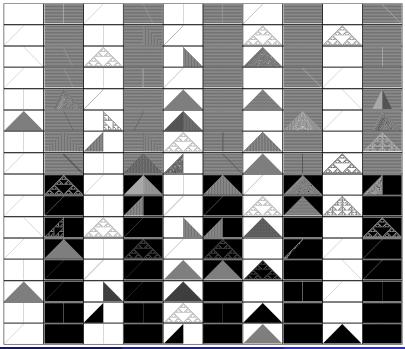
- alphabet Σ of size k (for example $\{0, 1, \ldots, k-1\}$)
- function $i : \mathbb{Z} \to \Sigma$ (the initial condition)
- function $f: \Sigma^d \to \Sigma$ (the update rule)





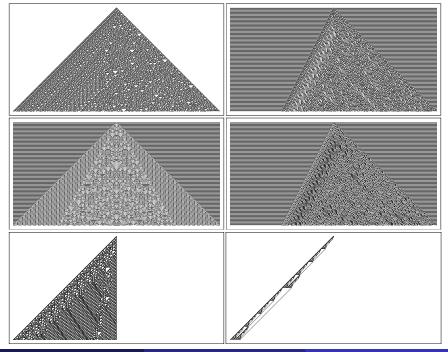
Naming scheme: $11111010_2 = 250$. Wolfram: Look at all k^{k^d} k-color rules depending on d cells.

Eric Rowland (Waterloo)



Eric Rowland (Waterloo)

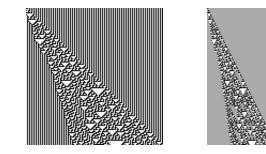
Words generated by cellular automata



Finiteness condition

All but finitely many cells in the initial condition have the same color.

We could also allow periodic backgrounds, but coarse-graining reduces to constant background.



Most of our examples will use k = 2 colors and the initial condition

2 Row words

- 3 Column words
- 4 The number of nonzero cells on row n
- 5 Boundary words

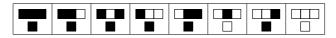
Row words

Wolfram 1984:

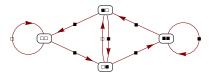
Given a cellular automaton rule, the set of finite words obtainable at step n is a regular language.

Step 0: All words are obtainable.

Step 1: To obtain $w_1 w_2 \cdots w_\ell$ we must overlap *d*-tuples appropriately.



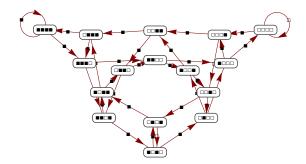
Construct the rule's "overlap graph" for words of length d - 1:



Row words (continued)

Step 2:

A subword of the initial condition of length 2(d-1) + 1 determines one letter on step 2. Construct overlap graph for words of length 2(d-1):



Step n:

A subword of length $n \cdot (d-1) + 1$ determines one letter on step *n*. Construct the overlap graph for words of length $n \cdot (d-1)$. The set of words obtainable at every step is the limit language.

Hurd 1987:

There exist rules for which the limit language is ...

- not regular.
- not context-free.
- not recursive.

limit language \cap \square \square^* \square^* $\square = \{\square$ \square^n \square^n $\square : n \ge 0\}.$

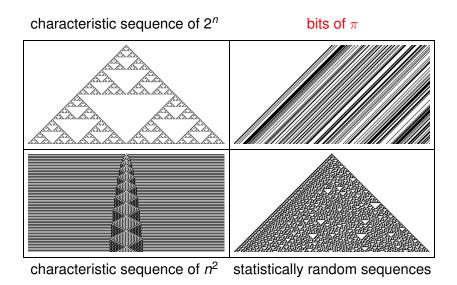
Open question: Which languages occur as limit languages?

2 Row words

4) The number of nonzero cells on row *n*

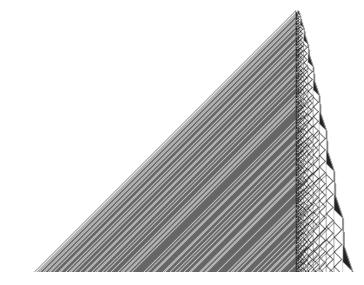
5 Boundary words

Infinite column words



Characteristic sequence of primes

A 16-color rule depending on 3 cells that computes the primes:



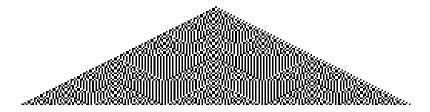
The Thue–Morse sequence

 $a(n) = \begin{cases} 0 & \text{if the binary representation of } n \text{ has an even number of 1s} \\ 1 & \text{if the binary representation of } n \text{ has an odd number of 1s.} \end{cases}$

For $n \ge 0$, the Thue–Morse sequence is

 $01101001100101101001011001101001 \cdots$.

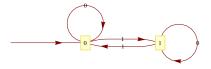
a(n) occurs as a column of this d = 5 automaton:



The Thue–Morse sequence

We can construct a different automaton containing a(n)...

The Thue–Morse sequence is 2-automatic:



The generating function $f(x) = \sum_{n \ge 0} a(n)x^n$ is algebraic over $\mathbb{F}_2(x)$:

$$(x+1)^3 f(x)^2 + (x^2+1)f(x) + x = 0.$$

Furstenberg 1967:

A power series f(x) over $\mathbb{F}_{p^{\alpha}}$ is algebraic if and only if it is the diagonal of a rational series g(x, y) over $\mathbb{F}_{p^{\alpha}}$.

Litow–Dumas 1993: Write $g(x/y, y) = P(x, y)/Q(x, y) = \sum_{n \ge 0} r_n(y)x^n$. Then Q(x, y) encodes a linear recurrence satisfied by $r_n(y)$. This gives a cellular automaton with memory.

If a(n) is *p*-automatic, then there exists a cellular automaton with column a(n).

Corollary: Every periodic sequence occurs.

Open questions

- Does every periodic sequence on an alphabet of size k occur in a k-color cellular automaton?
- Does every *k*-automatic sequence occur in a cellular automaton (if *k* is not prime)?
- Does the Fibonacci word

abaababaabaababaabaabaabaabaabaab

(the fixed point of $\varphi(a) = ab, \varphi(b) = a$) occur in a cellular automaton?

• Exhibit some sequence that does not occur as the column of a cellular automaton.

2 Row words

4 The number of nonzero cells on row *n*

5 Boundary words

Rule 106

Rule 106 grows like \sqrt{n} .

The number a(n) of black cells on row *n* is 2-regular:

$$a(4n+0) = a(n)$$

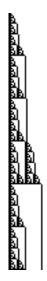
$$a(4n+1) = a(4n+2)$$

$$a(8n+2) = a(2n+1)$$

$$a(8n+3) = 2a(2n+1) - a(2n)$$

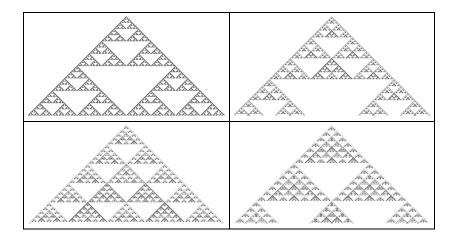
$$a(8n+6) = 2a(2n+1) - a(2n)$$

$$a(8n+7) = 4a(2n+1) - 3a(2n)$$



Binomial coefficients

Binomial coefficients modulo k are produced by cellular automata.



Nonzero binomial coefficients

Let
$$a_{p^{\alpha}}(n) = |\{0 \le m \le n : \binom{n}{m} \not\equiv 0 \mod p^{\alpha}\}|.$$

Write $n = n_{\ell} \cdots n_1 n_0$ in base *p*.

Let $|n|_w$ be the number of occurrences of w in $n_\ell \cdots n_1 n_0$.

$$a_2(n) = 2^{|n|_1}$$

• Fine 1947:

$$a_p(n)=\prod_{i=0}^\ell (n_i+1).$$

For example, $a_5(n) = 2^{|n|_1} 3^{|n|_2} 4^{|n|_3} 5^{|n|_4}$.

It follows that $a_p(n)$ is *p*-regular.

Nonzero binomial coefficients

Rowland 2011: Algorithm for obtaining a symbolic expression in $|n|_w$ for $a_{p^{\alpha}}(n)$. It follows that $a_{p^{\alpha}}(n)$ is *p*-regular for each $\alpha \ge 0$.

For example:

$$a_{p^2}(n) = \left(\prod_{i=0}^{\ell} (n_i+1)\right) \cdot \left(1 + \sum_{i=0}^{\ell-1} \frac{p - (n_i+1)}{n_i+1} \cdot \frac{n_{i+1}}{n_{i+1}+1}\right).$$

Expressions for p = 2 and p = 3:

$$\begin{aligned} a_4(n) &= 2^{|n|_1} \left(1 + \frac{1}{2} |n|_{10} \right) \\ a_9(n) &= 2^{|n|_1} 3^{|n|_2} \left(1 + |n|_{10} + \frac{1}{4} |n|_{11} + \frac{4}{3} |n|_{20} + \frac{1}{3} |n|_{21} \right) \end{aligned}$$

Higher powers of 2:

$$a_{8}(n) = 2^{|n|_{1}} \left(1 + \frac{1}{8} |n|_{10}^{2} + \frac{3}{8} |n|_{10} + |n|_{100} + \frac{1}{4} |n|_{110} \right)$$

$$\begin{aligned} \frac{a_{16}(n)}{2^{|n|_1}} &= 1 + \frac{5}{12} |n|_{10} + \frac{1}{2} |n|_{100} + \frac{1}{8} |n|_{110} \\ &+ 2|n|_{1000} + \frac{1}{2} |n|_{1010} + \frac{1}{2} |n|_{1100} + \frac{1}{8} |n|_{1110} + \frac{1}{16} |n|_{10}^2 \\ &+ \frac{1}{2} |n|_{10} |n|_{100} + \frac{1}{8} |n|_{10} |n|_{110} + \frac{1}{48} |n|_{10}^3 \end{aligned}$$

Additive automata

Binomial coefficients are the coefficients of $(1 + y)^n$:

$$(1+y)(1+3y+3y^2+y^3)$$

=1+(3+1)y+(3+3)y^2+(1+3)y^3+y^4

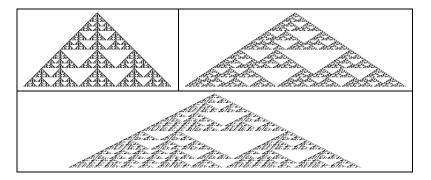
Martin–Odlyzko–Wolfram 1984:

Let q(y), $r_0(y)$ be polynomials with coefficients in some finite ring. There is a cellular automaton whose *n*th row consists of the coefficients of $q(y)^n r_0(y)$.

The entire evolution of the automaton is encoded in

$$\sum_{n\geq 0} r_n(y)x^n = \sum_{n\geq 0} q(y)^n r_0(y)x^n = \frac{r_0(y)}{1-xq(y)}.$$

Here is $(1 + y + y^{d-1})^n$ over \mathbb{F}_2 for d = 3, 4, 5:



Amdeberhan–Stanley ~2008:

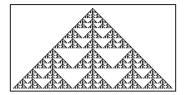
Let $f(x_1, ..., x_m) \in \mathbb{F}_{p^{\alpha}}[x_1, ..., x_m]$. The number a(n) of nonzero terms in the expanded form of $f(x_1, ..., x_m)^n$ is *p*-regular.

- 2 Row words
- 3 Column words
- 4 The number of nonzero cells on row *n*

5 Boundary words

Joint work with Charles Brummitt (UC Davis) ...

 $\ell(n) =$ width of region on row *n* that differs from the background

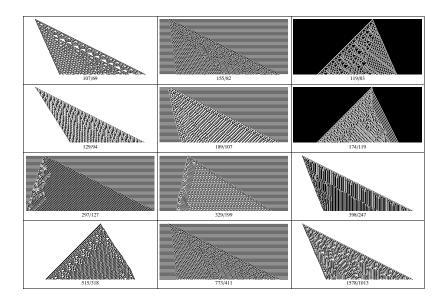


For example, $\ell(n) = 2n + 1$.

Upper bound: $\ell(n) \leq (d-1)n + c$.

For many automata, $\ell(n)$ is linear. For k = 2 and $d \le 3$, the only slopes that occur are 0, 1, 3/2, 2.

Interesting slopes for d = 4



For these automata, $\ell(n + 1) - \ell(n)$ is eventually periodic.

Definition The boundary word of an automaton is the infinite word $(\ell(n+1) - \ell(n))_{n \ge 0}$.

The boundary word is not necessarily a word on a finite subset of $\ensuremath{\mathbb{Z}}.$ But often it is.

Properties of the automaton are reflected in the boundary word.

Boundary word:

$$\begin{split} \boldsymbol{w}_{106} &= 1101001100000001000000011010011\cdots \\ &= 1^2 0^1 1^1 0^2 1^2 0^7 1^1 0^8 1^2 0^1 1^1 0^2 1^2 0^{31} 1^1 0^{32} \cdots . \end{split}$$

Let

$$\begin{split} \varphi &: \textbf{A} \rightarrow \textbf{ABCD}, \ \textbf{B} \rightarrow \textbf{CCAB}, \ \textbf{C} \rightarrow \textbf{CCCC}, \ \textbf{D} \rightarrow \textbf{CCCD} \\ \psi &: \textbf{A} \rightarrow \textbf{1}, \ \textbf{B} \rightarrow \textbf{1}, \ \textbf{C} \rightarrow \textbf{0}, \ \textbf{D} \rightarrow \textbf{1} \end{split}$$

Then $\mathbf{w}_{106} = \psi(\varphi^{\omega}(A))$. In particular, \mathbf{w}_{106} is morphic.

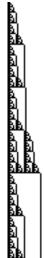
Square-root growth rate can be derived from φ .

The morphism φ is 4-uniform.

November 25.

The length $\ell(n)$ is 2-regular:

$$\begin{split} \ell(4n+1) &= 1/2\ell(4n) + 1/2\ell(4n+2) \\ \ell(8n+2) &= -2\ell(2n) + \ell(8n) + 2\ell(2n+1) \\ \ell(8n+3) &= -2\ell(2n) + \ell(8n) + 2\ell(2n+1) \\ \ell(8n+4) &= -3\ell(2n) + \ell(8n) + 3\ell(2n+1) \\ \ell(8n+6) &= -3\ell(2n) + \ell(8n) + 3\ell(2n+1) \\ \ell(8n+7) &= -4\ell(2n) + \ell(8n) + 4\ell(2n+1) \\ \ell(16n+0) &= -2\ell(n) + 3\ell(4n) + \ell(4n+2) - \ell(4n+3) \\ \ell(16n+8) &= -2\ell(n) + 1/2\ell(4n) + 7/2\ell(4n+2) - \ell(4n+3) \end{split}$$



Rule 39780 also grows like \sqrt{n} .

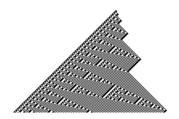
Its boundary word is $\psi(\varphi^{\omega}(A))$, where

$$\begin{split} \varphi : \textbf{A} &\rightarrow \textbf{ABC}, \ \textbf{B} \rightarrow \textbf{DAB}, \\ \textbf{C} &\rightarrow \textbf{CECE}, \ \textbf{D} \rightarrow \textbf{CECD}, \ \textbf{E} \rightarrow \textbf{CECE} \\ \psi : \textbf{A} \rightarrow \textbf{2}, \ \textbf{B} \rightarrow \textbf{2}, \ \textbf{C} \rightarrow \textbf{1}, \ \textbf{D} \rightarrow \textbf{0}, \ \textbf{E} \rightarrow -\textbf{1} \end{split}$$

 φ is not uniform.

 $\ell(n)$ is evidently not 2-regular.

d = 4 rule 2230



Growth is linear: $\ell(n) \in \Theta(n)$.

But
$$\lim_{n\to\infty} \frac{\ell(n)}{n}$$
 does not exist.

- $\liminf \ell(n)/n = 6/5$
- $\limsup \ell(n)/n = 3/2$

Boundary word is $\psi(\varphi^{\omega}(A))$, where

$$arphi : \mathbf{A}
ightarrow \mathbf{ABCB}, \ \mathbf{B}
ightarrow \mathbf{BB}, \ \mathbf{C}
ightarrow \mathbf{CC}$$

 $\psi : \mathbf{A}
ightarrow \epsilon, \ \mathbf{B}
ightarrow \mathbf{2}, \ \mathbf{C}
ightarrow \mathbf{0}.$

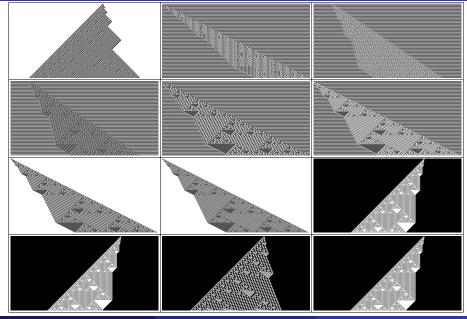
The fixed point of φ is

 $\varphi^{\omega}(A) = ABCBBBCCBBBBBBBCCCCBBBBBBBBBBBB<math>\cdots$.

The frequencies of *B* and *C* don't exist!

Eric Rowland (Waterloo)

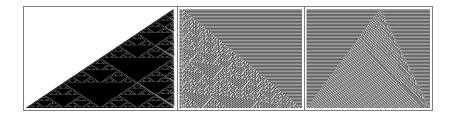
Automata with the same morphism φ



Eric Rowland (Waterloo)

Words generated by cellular automata

Morphic boundaries where the slope exists



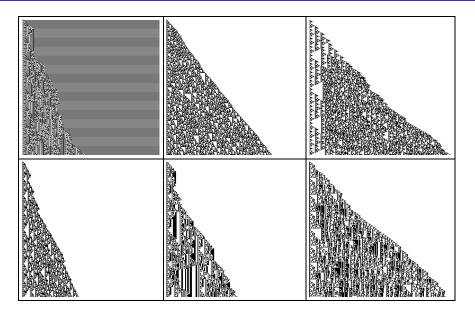
For the first, the boundary word is (basically) the fixed point

 $\varphi^{\omega}(2) = 2212211221221112212211221221111\cdots$

of the morphism $\varphi(1) = 1, \varphi(2) = 221$.

- Does every morphic word occur as the boundary word of a cellular automaton?
- Vague conjecture.
 If l(n) is computable faster than the automaton computes it, then the boundary word is morphic.
- Vague open question. Make the vague conjecture precise!

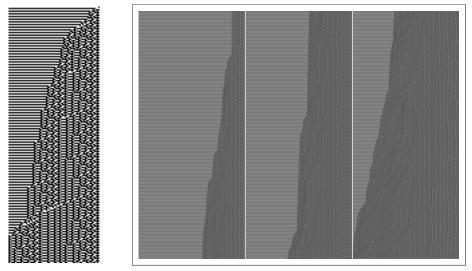
Chaotic boundaries



Eric Rowland (Waterloo)

Words generated by cellular automata

A misleading example



Around step 524500, growth increases rapidly (10000 steps shown).

Eric Rowland (Waterloo)