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Fibonacci sequence

Define F(0) =0, F(1) =1,andforn> 2

F(n)=F(n—1)+ F(n-2).
F(n),,zo . 0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610, ...

Rabbits:

Start with a pair of rabbits. Each pair of rabbits produces one new pair

each month. New rabbits take one month to mature. & & H b kMM
HUHHHRHNY

Stairs:

How many ways are there to climb n stairs, climbing 1 or 2 each step?

n=4: 1111 112 121 211 22

n=>5 11111 1121 1211 2111 221 1112 122 212
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Experiment 1

What does the Fibonacci sequence look like modulo m?

@ (F(n) mod m),>o is periodic.

@ If mfactors as m= p{" --- p*, then the period length is

£(m) = lem (6(101041 ) 76(:0[?/()) :
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Period length for prime powers

Theorem (D. D. Wall 1960)
If ((p?) # £(p), then £(p*) = p>~'¢(p).

“The most perplexing problem we have met in this study concerns the
hypothesis ¢(p?) # ¢(p). We have run a test on a digital computer
which shows that £(p?) # ¢(p) for all p up to 10,000; however, we
cannot yet prove that £(p?) = ¢(p) is impossible.”

A prime satisfying £(p?) = ¢(p) is called a Wall-Sun—Sun prime.

Connection to Fermat’s last theorem:
Theorem (Zhi-Hong Sun and Zhi-Wei Sun 1992)

Ifp+#2, ptxyz, and xP + yP = 2P, then ((p?) = {(p).
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To be or not to be?

http://www.primegrid.com:
There is no Wall-Sun—Sun prime less than 1.9 x 107,

Unanswered question
Are there any Wall-Sun—Sun primes?
Equivalent characterization: p? | F(p = 1), where

1 —1 ifp=1or4 mod5
" 1+1 ifp=20r3 mod 5.

If the p' digit of F(p & 1) is random, then one expects the number of
Wall-Sun—Sun primes < x to be

1
Z — =~ loglogs, x.
pex P

We should have already found log log,(1.9 x 10'7) = 4.05.

Eric Rowland Unanswered questions about the Fibonacci numbers 2016 October 26 5/14


http://www.primegrid.com

Experiment 2

How many residues are attained by F(n),>o modulo p*?

Unanswered question
What is the limiting density

im 11F(m) mod p® : n > 0}

a—00 pa

of residues attained by the Fibonacci sequence modulo p® ?

Conijecture:
For p = 2 the limiting density is 25.
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Known densities

Burr (1971) completed the characterization of integers m such that
(F(n) mod m),>¢ attains all residues modulo m:

2.5% 4.5% 6.5% 7.5% 14.5% 3°.5°
forallaa > 0and 8 > 0.
In particular, for p = 3 and p = 5 the limiting density is
im [{F(n) mod p° - n > 0}

a—00 pa

=1.

Theorem (Rowland—Yassawi 2016)

For p = 11 the limiting density is ;gi
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Experiment 3

Is there structure in the base-2 representations of Fibonacci numbers?

lim F(22") and lim F(2%") are equal to /3.

n—oo
140-2"4+0-224+1.2341.24+0-2540-26+1.27 4 ...
:Z(z4n+24n+3): 1 n 28 :_§
1-24"1-2¢" 5

n>0
We can justify use of the geometric series formula if 2 is “small”.

The 2-adic absolute value | - |, is defined on Q by |0 := 0 and
827, := J; for odd a, b and n € Z.

The set of 2-adic integers is denoted Z,.
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Interpolation to R

Let ¢ = 145 and ¢ = 15, Binet's formula:

Npo

-10)

F(x) =

\/ \/-5\/ 5 10
exp(x log ¢) — cos(mx) exp(x log(—¢))
V5

Eric Rowland
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Twisted interpolation to Z14

F(n) cannot be interpolated to Z1.
But it can be interpolated on each residue class modulo 10.

Let ¢ = 145 and ¢ = 155 in Zy5. )
Let w(¢),w(¢) € Z11 be 10th roots of unity congruent to ¢, ¢ mod 11.

Theorem (Rowland—Yassawi 2016)
Foreach 0 < i <9, the function F; : 711 — Z11 defined by

w(9) expyy (xlogn afyy) ~w(8)' expyy (xlogn 1f5)
V5

is the unique continuous function such that F(n) = F;(n) for all
n=i mod 10.
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Fibonacci residues modulo 11¢

Let 1 be the Haar measure on Z, defined by p(m + p“Zp) = pia.
Theorem (Rowland—Yassawi 2016)

The limiting density of residues attained by the Fibonacci sequence
modulo 11¢ is

i {F(mmod 11°:n >0} (UF Z11)> 145

a—00 11
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Fibonacci residues modulo 11¢

7 8
Y o 126208
@ €] [©] @

0

Y 126208
©]
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Fibonacci residues modulo p*

If p=1o0r4 mod 5, then x? = 5 has a solution in Z,.

If p=2o0r3 mod 5, then x2 = 5 does not have a solution in Zp.
We need to work in the extension Qp(v/5).

(If p =5, we already know the limiting density of residues is 1.)
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More general sequences

Let s(n),>0 be a sequence of p-adic integers satisfying a recurrence
s(n+d)+ag_1s(n+d—-1)+---+ays(n+1)+ aps(n) =0

with constant coefficients a; € Zp.

In general s(n) cannot be interpolated to Z,.
But it can be approximated by a continuous function s;(x) on each
residue class modulo m.

The limiting density of attained residues is

a—00 pa

jm 18I Mod P70 203 _ (Zp nJsi(r+ peZp)> '

]
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