Unanswered questions about the Fibonacci numbers

Eric Rowland

2016 October 26

Eric Rowland

Unanswered questions about the Fibonacci numbers

2016 October 26 1 / 14

Fibonacci sequence

Define F(0) = 0, F(1) = 1, and for $n \ge 2$

$$F(n) = F(n-1) + F(n-2).$$

 $F(n)_{n\geq 0}$: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, ...

Rabbits:

Start with a pair of rabbits. Each pair of rabbits produces one new pair each month. New rabbits take one month to mature.

Stairs:

How many ways are there to climb *n* stairs, climbing 1 or 2 each step?

n = 4: 1111 112 121 211 22 n = 5: 11111 1121 1211 2111 221 1112 122 212 What does the Fibonacci sequence look like modulo m?

- $(F(n) \mod m)_{n \ge 0}$ is periodic.
- If *m* factors as $m = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$, then the period length is $\ell(m) = \operatorname{lcm}(\ell(p_1^{\alpha_1}), \dots, \ell(p_k^{\alpha_k})).$

Theorem (D. D. Wall 1960)

If $\ell(p^2) \neq \ell(p)$, then $\ell(p^{\alpha}) = p^{\alpha-1}\ell(p)$.

"The most perplexing problem we have met in this study concerns the hypothesis $\ell(p^2) \neq \ell(p)$. We have run a test on a digital computer which shows that $\ell(p^2) \neq \ell(p)$ for all p up to 10,000; however, we cannot yet prove that $\ell(p^2) = \ell(p)$ is impossible."

A prime satisfying $\ell(p^2) = \ell(p)$ is called a Wall–Sun–Sun prime.

Connection to Fermat's last theorem:

Theorem (Zhi-Hong Sun and Zhi-Wei Sun 1992)

If $p \neq 2$, $p \nmid xyz$, and $x^p + y^p = z^p$, then $\ell(p^2) = \ell(p)$.

To be or not to be?

<code>http://www.primegrid.com:</code> There is no Wall–Sun–Sun prime less than $1.9\times10^{17}.$

Unanswered question

Are there any Wall-Sun-Sun primes?

Equivalent characterization: $p^2 | F(p \pm 1)$, where

$$\pm 1 = \begin{cases} -1 & \text{if } p \equiv 1 \text{ or } 4 \mod 5 \\ +1 & \text{if } p \equiv 2 \text{ or } 3 \mod 5. \end{cases}$$

If the p^1 digit of $F(p \pm 1)$ is random, then one expects the number of Wall–Sun–Sun primes $\leq x$ to be

$$\sum_{p \le x} \frac{1}{p} \approx \log \log_2 x.$$

We should have already found $\log \log_2(1.9 \times 10^{17}) = 4.05$.

Eric Rowland

Unanswered questions about the Fibonacci numbers

How many residues are attained by $F(n)_{n\geq 0}$ modulo p^{α} ?

Unanswered question

What is the limiting density

$$\lim_{\alpha \to \infty} \frac{|\{F(n) \bmod p^{\alpha} : n \ge 0\}|}{p^{\alpha}}$$

of residues attained by the Fibonacci sequence modulo p^{α} ?

Conjecture: For p = 2 the limiting density is $\frac{21}{32}$.

Eric Rowland

Burr (1971) completed the characterization of integers *m* such that $(F(n) \mod m)_{n>0}$ attains all residues modulo *m*:

 $2 \cdot 5^{\alpha}$, $4 \cdot 5^{\alpha}$, $6 \cdot 5^{\alpha}$, $7 \cdot 5^{\alpha}$, $14 \cdot 5^{\alpha}$, $3^{\beta} \cdot 5^{\alpha}$

for all $\alpha \geq 0$ and $\beta \geq 0$.

In particular, for p = 3 and p = 5 the limiting density is

$$\lim_{\alpha \to \infty} \frac{|\{F(n) \bmod p^{\alpha} : n \ge 0\}|}{p^{\alpha}} = 1.$$

Theorem (Rowland–Yassawi 2016)

For p = 11 the limiting density is $\frac{145}{264}$.

Is there structure in the base-2 representations of Fibonacci numbers?

$$\lim_{n \to \infty} F(2^{2n}) \text{ and } \lim_{n \to \infty} F(2^{2n+1}) \text{ are equal to } \pm \sqrt{-\frac{3}{5}}.$$

$$1 + 0 \cdot 2^1 + 0 \cdot 2^2 + 1 \cdot 2^3 + 1 \cdot 2^4 + 0 \cdot 2^5 + 0 \cdot 2^6 + 1 \cdot 2^7 + \cdots$$

$$= \sum_{n \ge 0} \left(2^{4n} + 2^{4n+3} \right) = \frac{1}{1 - 2^4} + \frac{2^3}{1 - 2^4} = -\frac{3}{5}$$

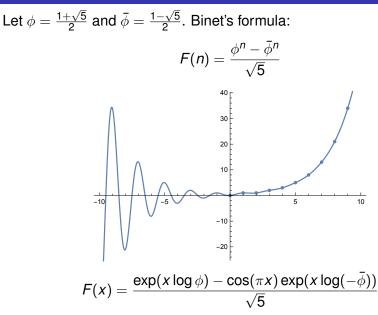
We can justify use of the geometric series formula if 2 is "small".

The 2-adic absolute value $|\cdot|_2$ is defined on \mathbb{Q} by $|0|_2 := 0$ and $|\frac{a}{b}2^n|_2 := \frac{1}{2^n}$ for odd a, b and $n \in \mathbb{Z}$.

The set of 2-adic integers is denoted \mathbb{Z}_2 .

Eric Rowland

Interpolation to \mathbb{R}



Twisted interpolation to \mathbb{Z}_{11}

F(n) cannot be interpolated to \mathbb{Z}_{11} . But it can be interpolated on each residue class modulo 10.

Let $\phi = \frac{1+\sqrt{5}}{2}$ and $\bar{\phi} = \frac{1-\sqrt{5}}{2}$ in \mathbb{Z}_{11} . Let $\omega(\phi), \omega(\bar{\phi}) \in \mathbb{Z}_{11}$ be 10th roots of unity congruent to $\phi, \bar{\phi} \mod 11$.

Theorem (Rowland–Yassawi 2016)

For each $0 \le i \le 9$, the function $F_i : \mathbb{Z}_{11} \to \mathbb{Z}_{11}$ defined by

$$F_i(x) := \frac{\omega(\phi)^i \exp_{11}\left(x \log_{11} \frac{\phi}{\omega(\phi)}\right) - \omega(\bar{\phi})^i \exp_{11}\left(x \log_{11} \frac{\bar{\phi}}{\omega(\bar{\phi})}\right)}{\sqrt{5}}$$

is the unique continuous function such that $F(n) = F_i(n)$ for all $n \equiv i \mod 10$.

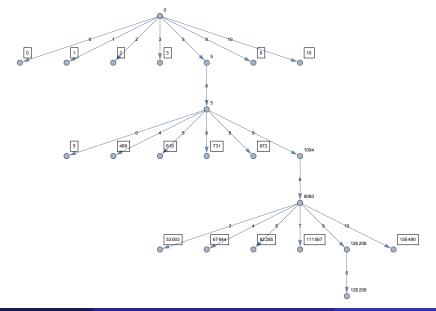
Let μ be the Haar measure on \mathbb{Z}_p defined by $\mu(m + p^{\alpha}\mathbb{Z}_p) = \frac{1}{p^{\alpha}}$.

Theorem (Rowland–Yassawi 2016)

The limiting density of residues attained by the Fibonacci sequence modulo 11^α is

$$\lim_{\alpha\to\infty}\frac{|\{F(n) \bmod 11^{\alpha}: n\geq 0\}|}{11^{\alpha}} = \mu\left(\bigcup_{i=0}^{9}F_i(\mathbb{Z}_{11})\right) = \frac{145}{264}.$$

Fibonacci residues modulo 11^{α}



Eric Rowland

Unanswered questions about the Fibonacci numbers

2016 October 26 12 / 14

If $p \equiv 1$ or 4 mod 5, then $x^2 = 5$ has a solution in \mathbb{Z}_p .

If $p \equiv 2 \text{ or } 3 \mod 5$, then $x^2 = 5$ does not have a solution in \mathbb{Z}_p . We need to work in the extension $\mathbb{Q}_p(\sqrt{5})$.

(If p = 5, we already know the limiting density of residues is 1.)

Let $s(n)_{n\geq 0}$ be a sequence of *p*-adic integers satisfying a recurrence

$$s(n+d) + a_{d-1}s(n+d-1) + \cdots + a_1s(n+1) + a_0s(n) = 0$$

with constant coefficients $a_i \in \mathbb{Z}_p$.

In general s(n) cannot be interpolated to \mathbb{Z}_p . But it can be approximated by a continuous function $s_i(x)$ on each

residue class modulo m.

The limiting density of attained residues is

$$\lim_{\alpha\to\infty}\frac{|\{s(n) \bmod p^{\alpha} : n \ge 0\}|}{p^{\alpha}} = \mu\left(\mathbb{Z}_p \cap \bigcup_i s_i(r+p^e\mathbb{Z}_p)\right).$$