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the context-free grammar G

start symbols: 0,1,2
formation rules: 0→ 12, 0→ 21, 1→ 02, 1→ 20, 2→ 01, 2→ 10

An n-leaf tree T parses a length-n word w on {0,1,2}
if T is a valid derivation tree for w under G.

For example, the tree parses 0110212:

1

0 2

1 0

2

1 0

1

0

2 1

2

The set of possible derivation trees under G is the set of binary trees.
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ambiguity

The grammar G is ambiguous;
there exist distinct trees that parse a common word.

The trees

both parse 010:
1

2

0 1

0

1

0 2

1 0
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another example

The trees

both parse 0110212:
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a much stronger statement

Theorem
Let n ≥ 1, and let T1 and T2 be n-leaf binary trees. Then T1 and T2
parse a common word under G.

0010
0121

0121
0102
0112

0112
0121

0010
0100

0100
0102

0010 0100

0112 0102
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motivation

Theorem (Louis Kauffman, 1990)
The following are equivalent.

Every pair of n-leaf binary trees parses a common word under G.
Every planar map is four-colorable.

Perhaps an enumerative or language theoretic approach will lead to a
proof of the four color theorem that is shorter than known proofs.
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sketch of correspondence
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sketch of correspondence
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{e,0,1,2} is the Klein 4-group.
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sketch of correspondence
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equivalence classes of parse words

Let ParseWords(T1,T2) be the set of equivalence classes of words
parsed by both trees T1 and T2.

For example, ParseWords( , ) = {0121}.

The four color theorem is equivalent to the statement that for every pair
of n-leaf binary trees T1 and T2 we have ParseWords(T1,T2) 6= {}.
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path trees

A path tree is a binary tree with at most two vertices on each level.

lll llr lr l lr r r ll r lr r r l r r r

Let LeftCombTree(n) be the n-leaf path tree corresponding to ln−2.

º

Let RightCombTree(n) be the n-leaf path tree corresponding to rn−2.
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a pair of comb trees

Theorem
ParseWords(LeftCombTree(n),RightCombTree(n)) ={{

01n−22
}

if n ≥ 2 is even{
01n−20

}
if n ≥ 3 is odd.

Proof by example.

0 1

0

1
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crooked trees

Let LeftCrookedTree(n) be the path tree corresponding to (lr)(n−2)/2.

º

Let RightCrookedTree(n) be the path tree corresponding to (rl)(n−2)/2.

º
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a comb tree and a crooked tree

Theorem
ParseWords(LeftCombTree(n),RightCrookedTree(n)) =

{
mod(1− n,3)

(
(012)n/6)R

(012)(n−2)/6
}

if n ≥ 2 is even{
mod(1− n,3)

(
(012)(n−3)/6)R

(012)(n+1)/6
}

if n ≥ 3 is odd.
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a pair of crooked trees

The number of parse words is generally not constant.

Theorem
For n ≥ 2,

|ParseWords(LeftCrookedTree(n),RightCrookedTree(n))| = 2bn/2c−1.
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a two-parameter family

Let LeftCombTree(m,n) and RightCombTree(m,n) be the
(m + n)-leaf path trees corresponding to lmrn−2 and rmln−2.

For example, LeftCombTree(3,5) = .

Theorem
For m ≥ 1, k ≥ 1, and n ≥ k + 2,

b(m, k) =
|ParseWords(LeftCombTree(m,n),RightCombTree(k ,m + n − k))|

is independent of n. Moreover,

(M − 2)(M − 1)(M + 1)b(m, k) = 0.
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decomposable pairs

Consider the pair

a

b

c
d

e
f g

h
i

j
k

l a
b

c

d e

f
g

h
i

j

k

l

If two trees have subtrees with the same sets of leaves,
we can decompose the pair into smaller pairs.
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decomposable pairs

Breaking the trees as

a

b

c

d
e

f g

h
i

j
k

l a

b

c

d e
f

g

h
i

j

k

l

produces the same partition {{a, l}, {b, c,h, i , j , k}, {d ,e, f ,g}} of the
leaves in both trees.
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extending a parse word . . .

Consider the pair

which parses 01220. “Triplicate” the first leaf:

1

0 2

1 0

2 1

2 0

1

2

0 1

0

1 2

2

0

1

0 2

0 1

0 2

1 0

2 1

2 0

1

2

0 1

0 2

0 1

0

1 2

2

0

We have extended the parse word for the smaller pair to a parse word
for a larger pair.
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. . . reducing a parse word

Since the (larger) pair

contains the right comb in leaves 1–3, it is reducible to

Theorem
If a pair of n-leaf (not necessarily path) trees has three consecutive
leaves that appear in a comb structure in both trees, then the pair is
reducible.

In particular, the three leaves receive the same label for some parse
word.

Eric Rowland (Tulane University) Toward a language theoretic proof of the 4CT January 8, 2011 23 / 25



“mutual crookedness”

However, something stronger appears to be true.

Conjecture
If a pair of n-leaf trees has two consecutive leaves that appear in a
comb structure in both trees, then there is a parse word in which the
two leaves receive the same label.

1

0 2

0

1 2

1

0 2

0 1

1

2

0 1

0

2

1

2 0

0

1

But there is no obvious relationship between the parse word of the
original pair and the parse word of the “reduced” pair!
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concluding thoughts

To prove the “four color theorem for path trees” it suffices to
consider indecomposable, “weakly mutually crooked” pairs of path
trees.

Existing proofs of the four color theorem successfully use the
notion of reducibility.
Should the language theoretic approach also pursue it?

Since the number of parse words of LeftCombTree(m,n) and
RightCombTree(k ,m + n − k) satisfies such a simple recurrence,
looking for generalizations seems like a promising direction.
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