The structure of equivalence classes in F_2

Eric Rowland, joint work with Bobbe Cooper

Laboratoire de Combinatoire et d'Informatique Mathématique Université du Québec à Montréal

2013 April 12

1 Automorphisms and equivalent words

2 Minimal words and root words

3 Structure of equivalence classes

Automorphisms

•
$$L_2 = \{a, b, \overline{a}, \overline{b}\}$$
, where $\overline{a} = a^{-1}$ and $\overline{b} = b^{-1}$.

• The free group on two generators:

$$F_2 = \langle a, b \rangle = \{ w_1 \cdots w_\ell \in L_2^* : w_i \neq w_{i+1}^{-1} \text{ for } 1 \leq i \leq \ell - 1 \}$$

 $= \{\epsilon, a, b, \overline{a}, \overline{b}, aa, ab, a\overline{b}, ba, bb, b\overline{a}, \overline{a}b, \overline{a}\overline{a}, \overline{a}\overline{b}, \overline{b}a, \overline{b}\overline{a}, \overline{b}\overline{b}, \dots \}.$

Example

Let $\pi(a) = b, \pi(b) = \overline{a}$. π extends to an automorphism of F_2 : $\pi(\overline{a}) = \overline{b}$ and $\pi(\overline{b}) = a$. For example, $\pi(aaab\overline{a}b) = bbb\overline{a}\overline{b}\overline{a}$.

A permutation is an automorphism that permutes L_2 .

Example

Let ϕ be the inner automorphism $\phi(w) = \overline{a}bw\overline{b}a$. Then $\phi(aaab\overline{a}b) = \overline{a}baaab$ and $\phi(a) = \overline{a}ba\overline{b}a$.

Eric Rowland (UQAM)

Equivalence under

• permutations (*aaab\overline{a}b \sim bbb\overline{a}\overline{b}\overline{a} \sim bbba\overline{b}a \sim \cdots*)

and

• inner automorphisms ($aaab\overline{a}b \sim aab\overline{a}ba \sim ab\overline{a}baa \sim \cdots$) is cosmetic.

It is natural to work modulo $Inn F_2$ and consider cyclic words.

We'll also look at equivalence classes of words modulo permutations.

Definition

A one-letter automorphism of F_2 is an automorphism which maps $x \mapsto x$ and $y \mapsto yx$ for some $x, y \in L_2$ with $y \notin \{x, \overline{x}\}$.

We will denote by ϕ_{yx} the one-letter automorphism $x \mapsto x$, $y \mapsto yx$. The inverse automorphism maps $x \mapsto x$ and $y \mapsto y\overline{x}$.

Example

Let
$$\phi = \phi_{ba}$$
. Then $\phi(b) = ba, \phi(\overline{b}) = \overline{ab}$.
 $\phi(a\overline{b}) = a\overline{ab} = \overline{b}$, so $a\overline{b}$ is not minimal.

Definition

A word $w \in F_2$ is minimal if $|w| \le |\phi(w)|$ for all $\phi \in Aut F_2$.

Whitehead's theorem

We write $w \sim v$ if $\phi(w) = v$ for some automorphism ϕ .

Theorem (Whitehead, 1936)

If $w, v \in F_2$ such that $w \sim v$ and v is minimal, then there exists a sequence $\phi_1, \phi_2, \ldots, \phi_m$ of one-letter automorphisms and a permutation π such that

•
$$\pi\phi_m\cdots\phi_2\phi_1(w)=v$$
 as cyclic words and

• $|\phi_{k+1}\phi_k\cdots\phi_2\phi_1(w)| < |\phi_k\cdots\phi_2\phi_1(w)|$ for $0 \le k \le m-1$.

The set of one-letter automorphisms is finite. (There are 8.)

Corollary

Determining minimality of a word in F_2 is decidable. Determining equivalence of two words in F_2 is decidable.

Eric Rowland (UQAM)

Corollary

Given n, there is an algorithm for computing representatives of all equivalence classes of F_2 under \sim containing a word of length $\leq n$.

We computed all classes containing words of length \leq 20, recording minimal words up to permutations and inner automorphisms. (There are 14 027 794 classes whose minimal words have length 20.)

Example

$$\begin{split} W &= \{ aa, bb, \overline{aa}, \overline{bb}, abab, abb\overline{a}, a\overline{b}a\overline{b}, \overline{a}\overline{b}\overline{a}\overline{b}, \overline{a}\overline{b}\overline{b} \} \end{split}$$

Equivalence classes

0.1	ε
1.1	а
2.1	aa
3.1	aaa
4.1	aaaa
4.2	abab
4.3	aabb
	abab
5.1	aaaaa
5.2	aabab
5.3	aab a b
5.4	aaabb
	aabāb

6.1	aaaaaa
6.2	aaabab
6.3	aaabbb
6.4	aaabab
6.5	aabaab
6.6	aababb
6.7	aabbab
6.8	aabbāb
6.9	aab aa b
6.10	aaaabb
	aaab a b
	aabaab
7.1	aaaaaaa
7.2	aaaabab
7.3	aaaabbb

7.4	aaaab a b
7.5	aaabaab
7.6	aaababb
7.7	aaabbab
7.8	aaabbāb
7.9	aaabb a b
7.10	aaabābb
7.11	aaab aa b
7.12	aaabābb
7.13	aabaabb
7.14	aabbabb
7.15	aabb aa b
7.16	aaaaabb
	aaaab a b
	aaab aa b

- Myasnikov and Shpilrain (2003): The number of minimal words equivalent to minimal *w* ∈ *F*₂ is bounded by a polynomial in |*w*|.
- Lee (2006): The same is true for minimal w ∈ F_n under a local condition on w.

These results imply upper bounds on the time required to determine whether $w, v \in F_n$ are equivalent.

Automorphisms and equivalent words

Definition

Let $(v)_w$ denote the number of (possibly overlapping) occurrences of v and v^{-1} in the cyclic word w.

Example

Let $w = aa\overline{b}b\overline{a}ba\overline{b}a$. The length-2 subword counts are $(aa)_w = 2$, $(bb)_w = 1$, $(ab)_w = 1 = (ba)_w$, and $(a\overline{b})_w = 2 = (\overline{b}a)_w$.

Lemma

If
$$x, y \in L_2$$
, then $(xy)_w = (yx)_w$.

Recall that the one-letter automorphism ϕ_{yx} maps $x \mapsto x$ and $y \mapsto yx$.

 ϕ_{yx} causes cancellations in the subword $y\overline{x}$ and its inverse. ϕ_{yx} causes additions in the subwords yx and yy and their inverses.

Lemma

w is minimal if and only if, for each pair of letters *x* and *y* with $x \notin \{y, \overline{y}\}$, we have $(y\overline{x})_w \leq (yx)_w + (yy)_w$.

Theorem

w is minimal if and only if $|(ab)_w - (a\overline{b})_w| \leq \min((aa)_w, (bb)_w)$.

Equivalence classes

0.1	ε
1.1	а
2.1	aa
3.1	aaa
4.1	aaaa
4.2	abab
4.3	aabb
	abab
5.1	aaaaa
5.2	aabab
5.3	aab a b
5.4	aaabb
	aabāb

6.1	aaaaaa
6.2	aaabab
6.3	aaabbb
6.4	aaabab
6.5	aabaab
6.6	aababb
6.7	aabbab
6.8	aabbāb
6.9	aab aa b
6.10	aaaabb
	aaab a b
	aab aa b
7.1	aaaaaaa
7.2	aaaabab
7.3	aaaabbb

7.4	aaaab a b
7.5	aaabaab
7.6	aaababb
7.7	aaabbab
7.8	aaabbāb
7.9	aaabbab
7.10	aaabābb
7.11	aaab aa b
7.12	aaabābb
7.13	aabaabb
7.14	aabbabb
7.15	aabb aa b
7.16	aaaaabb
	aaaab a b
	aaab aa b

Equivalence classes

0.1	ϵ
1.1	а
2.1	aa
3.1	aaa
4.1	aaaa
4.2	abab
4.3	aabb
	abab
5.1	aaaaa
5.2	aabab
5.3	aab a b
5.4	aaabb
	aabāb

6.1	aaaaaa
6.2	aaabab
6.3	aaabbb
6.4	aaabab
6.5	aabaab
6.6	aababb
6.7	aabbab
6.8	aabbāb
6.9	aab aa b
6.10	aaaabb
	aaab a b
	aabaab
7.1	aaaaaaa
7.2	aaaabab
7.3	aaaabbb

7.4	aaaab a b
7.5	aaabaab
7.6	aaababb
7.7	aaabbab
7.8	aaabbāb
7.9	aaabb a b
7.10	aaabābb
7.11	aaab aa b
7.12	aaabābb
7.13	aabaabb
7.14	aabbabb
7.15	aabb aa b
7.16	aaaaabb
	aaaab a b
	aaab aa b

Definition

A child of $w \neq \epsilon$ is a word obtained by duplicating a letter in *w*. Also define the words $a, \overline{a}, b, \overline{b}$ to be children of ϵ .

Example

The children of *aaabab* are *aaaabab*, *aaabbab*, *aaabab*, and *aaababb*.

A child of a minimal word w is necessarily minimal, since

$$|(ab)_w - (a\overline{b})_w| \leq \min((aa)_w, (bb)_w).$$

Definition

A root word is a minimal word that is not a child of any minimal word.

Root words are new minimal words with respect to duplicating a letter.

Example

The minimal word *aabb* is a root word, since neither of its parents *abb* and *aab* is minimal.

Example

The minimal words $aba\overline{b}$ and $ab\overline{a}\overline{b}$ are root words. They are not children of any minimal word; in particular they have no subword *xx*.

A word *w* is alternating if $(aa)_w = (bb)_w = 0$. More generally, any alternating minimal word is a root word.

Characterization of root words

Root words refine the notion of minimal words.

Theorem

w is a root word if and only if $|(ab)_w - (a\overline{b})_w| = (aa)_w = (bb)_w$.

Proof.

Recall: *w* is minimal if and only if $|(ab)_w - (a\overline{b})_w| \le \min((aa)_w, (bb)_w)$. A minimal word *w* is a root word if and only if replacing any *xx* by *x* in *w* produces a non-minimal word.

Example

$$w = (ab\overline{a}\overline{b})^n$$
 is a root word: $|(ab)_w - (a\overline{b})_w| = 0 = (aa)_w = (bb)_w$.

Theorem

If w is a root word, then |w| is divisible by 4.

The property of being a root word is preserved under automorphisms.

Theorem

If w is a root word, $w \sim v$, and |w| = |v|, then v is a root word.

A class *W* whose minimal words are root words is a root class.

Root classes

0.1	ϵ
1.1	а
2.1	aa
3.1	aaa
4.1	aaaa
4.2	abab
4.3	aabb
	abab
5.1	aaaaa
5.2	aabab
5.3	aab a b
5.4	aaabb
	aabāb

6.1	aaaaaa
6.2	aaabab
6.3	aaabbb
6.4	aaabab
6.5	aabaab
6.6	aababb
6.7	aabbab
6.8	aabbāb
6.9	aab aa b
6.10	aaaabb
	aaab a b
	aabaab
7.1	aaaaaaa
7.2	aaaabab
7.3	aaaabbb

7.4	aaaab a b
7.5	aaabaab
7.6	aaababb
7.7	aaabbab
7.8	aaabbāb
7.9	aaabbab
7.10	aaabābb
7.11	aaab aa b
7.12	aaab a bb
7.13	aabaabb
7.14	aabbabb
7.15	aabb aa b
7.16	aaaaabb
	aaaab a b
	aaab aa b

The structure of equivalence classes in F2

Automorphisms and equivalent words

Let $\Gamma(W)$ be a directed graph whose vertices are the minimal words of W up to permutations and inner automorphisms.

We draw an edge $w \to v$ for each one-letter automorphism ϕ such that $\phi(w)$ and v differ only by a permutation and an inner automorphism.

There are 8 one-letter automorphisms, but only 4 classes modulo $\text{Inn } F_2$, since $\phi_{yx} = (x \mapsto yx\overline{y}) \circ \phi_{\overline{yx}}$.

Example

Consider equivalence class 4.3 containing *aabb* and *abab*. Apply the 4 one-letter automorphisms to *aabb*:

$a\mapsto ab$:	ababbb	$m{b}\mapstom{b}m{a}$:	aababa
$a\mapsto a\overline{b}$:	abab	$m{b}\mapstom{b}\overline{m{a}}$:	abāb

Apply the 4 one-letter automorphisms to $aba\overline{b}$:

$m{a}\mapstom{a}m{b}$:	abba	$m{b}\mapstom{b}m{a}$:	abab
$a\mapsto a\overline{b}$:	aabb	$b\mapsto b\overline{a}$:	abab

Therefore $\Gamma(W)$ is

$$aabb \rightleftharpoons aba \overline{b}.$$

Whitehead's theorem implies that $\Gamma(W)$ is connected.

Khan (2004) studied the structure of $\Gamma(W)$.

Showing that a large number of subgraphs are forbidden puts bounds on the size of a spanning tree of $\Gamma(W)$.

Theorem (Khan)

If W is an equivalence class whose minimal words have length $n \ge 10$ and $|V(\Gamma(W))| \ge 4373$, then $|V(\Gamma(W))| \le n-5$.

Equivalence of $w, v \in F_2$ can be determined in time $O(\max(|w|, |v|)^2)$.

Our work recasts Khan's results, with shorter proofs and sharper constants:

If *W* is an equivalence class whose minimal words have length $n \ge 9$, then $|V(\Gamma(W))| \le n-5$.

Khan identified two types of legal spanning trees:

- (i) trees with at most n 5 vertices and simple edge structure
- (ii) trees with size bounded by some constant

These correspond to non-root classes and root classes.

Structure of non-root classes

Theorem

Let W be a non-root class. Then $\Gamma(W)$ has one of the following forms.

(P1)–(P3) include degenerate forms:

Simple path graph

Let $\phi = \phi_{b\overline{a}}$, which maps $b \mapsto b\overline{a}$.

 ϕ shrinks subwords $ba^m b$ and extends subwords $b\overline{a}^m b$ and leaves subwords $ba^{\pm m}\overline{b}$ fixed.

Vertices with outdegree 2 have $(bb)_w = 0$.

Eric Rowland (UQAM)

Folded path graph

Example

Again let $\phi = \phi_{b\overline{a}}$.

But $\phi(aab\overline{aa}b) = ab\overline{aaa}b = \pi(aaab\overline{a}b)$, where $\pi(a) = \overline{a}$ and $\pi(b) = b$.

aaaabb
$$\overbrace{\phi^{-1}}^{\phi}$$
aaab \overline{aba} $\overbrace{\phi^{-1}}^{\phi}$ aab \overline{aba}

Broken symmetry occurs; even though $\phi^{-1}\pi(aaab\overline{a}b) = aab\overline{a}\overline{a}b$, $\phi^{-1}\pi$ does not contribute an edge to $\Gamma(W)$ since π applies before ϕ^{-1} .

Theorem

Let W be a root class with no alternating minimal word. Then $\Gamma(W)$ is one of the following graphs.

Example

 $\phi_{a\overline{b}}(aaababbb) = a\overline{b}a\overline{b}aabb.$ $\phi_{b\overline{a}}(aaababbb) = aabb\overline{a}b\overline{a}b.$

 $\phi_{ab}(aabb\overline{a}b\overline{a}b) = ababb\overline{a}ab.$

 $\phi_{ba}(a\overline{b}a\overline{b}aabb) = \overline{bb}aababa.$

Theorem

Let W be a root class containing an alternating minimal word w_0 . Then $\Gamma(W)$ is one of the following graphs.

Example

Let $w_0 = (ab\overline{a}\overline{b})^n$. The automorphism $a \mapsto ab$ maps w_0 to $((ab)b(\overline{b}\overline{a})\overline{b})^n = (ab\overline{a}\overline{b})^n = w_0$. Similarly, the other three one-letter automorphisms leave w_0 fixed: $w_0 = w_0$

In fact these are the only equivalence classes of type (R4):

If w_0 is an alternating minimal word whose graph has only 1 vertex, then for each automorphism $\phi : y \mapsto yx$ the word $\phi(w_0)$ is alternating.

Therefore
$$0 = (yy)_{\phi(w_0)} = (y\overline{x}y)_{w_0}.$$

Non-root classes have simple path structure.

Root word classes have one of seven possible graphs.

Corollary

If W is a root class, then $\Gamma(W)$ has 1, 2, 3, or 5 vertices.

Moreover, each of the forms (P1)-(P3) and (R1)-(R7) occurs.

п	(P1)	(P2)	(P3)	(R1)	(R2)	(R3)	(R4)	(R5)	(R6)	(R7)
0	0	0	0	0	0	0	1	0	0	0
1	0	0	1	0	0	0	0	0	0	0
2	0	0	1	0	0	0	0	0	0	0
3	0	0	1	0	0	0	0	0	0	0
4	0	0	1	0	0	0	1	1	0	0
5	0	1	3	0	0	0	0	0	0	0
6	4	0	6	0	0	0	0	0	0	0
7	10	1	5	0	0	0	0	0	0	0
8	22	0	8	1	2	3	1	3	1	2
9	81	5	15	0	0	0	0	0	0	0
10	298	4	38	0	0	0	0	0	0	0
11	855	7	49	0	0	0	0	0	0	0
12	2140	4	96	4	12	244	1	7	5	31
13	7040	29	155	0	0	0	0	0	0	0
14	22244	30	342	0	0	0	0	0	0	0
15	64774	49	553	0	0	0	0	0	0	0
16	175209	46	1104	11	70	10899	1	19	15	380
17	543631	185	1927	0	0	0	0	0	0	0
18	1649842	232	3892	0	0	0	0	0	0	0
19	4824825	343	6889	0	0	0	0	0	0	0
20	13535352	406	13592	35	400	473355	1	55	51	4547

 ϕ is level on w if $|\phi(w)| = |w|$.

Lemma

Suppose w is a minimal word such that ϕ_{yx} is level on w. Then

- $\phi_{y\overline{x}}$ is level on w if and only if $(yy)_w = 0$,
- ϕ_{xy} is level on w if and only if w is a root word, and
- $\phi_{x\overline{y}}$ is level on w if and only if w is an alternating root word.

Knowing whether *w* is alternating is significant information.

• Understand descendancy on the level of equivalence classes.

- Can equivalence classes be enumerated?
- For $10 \le n \le 20$,

 $\frac{\text{\# equivalence classes whose minimal words have length } n}{3^n} \approx .004.$

Does the limit exist?

• How much carries over to *F_n*?