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Avoiding squares

Axel Thue (1863–1922)

A square is a nonempty word of the form ww .
Are there arbitrarily long square-free words on {0,1}?

Choose an order on {0,1} and try to construct one:

010X
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Infinite alphabet

What is the lexicographically least word on Z≥0 avoiding a pattern?

Theorem (Guay-Paquet–Shallit 2009)
Let ϕ(n) = 0 (n + 1).
The lexicographically least square-free word on Z≥0 is ϕ∞(0).

ϕ(0) = 01

ϕ2(0) = 0102

ϕ3(0) = 01020103
...

ϕ∞(0) = 01020103010201040102010301020105 · · ·

More generally, let a ≥ 2. Let ϕ(n) = 0a−1(n + 1).
The lexicographically least a-power-free word on Z≥0 is ϕ∞(0).
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Fractional powers

(0111)3/2 = 011101 is a 3
2 -power.

Definition
If v = v0v1 · · · v`−1 is a nonempty word whose length ` is divisible by b,
the a

b -power of v is

va/b := vba/bcv0v1 · · · v`·(a/b−ba/bc)−1.

5
4 -powers look like xyx = (xy)5/4 where |y | = 3|x |.

Notation
For a

b > 1, let wa/b be the lex. least a
b -power-free word on Z≥0.

We assume gcd(a,b) = 1 and 1 < a
b < 2.
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Avoiding 5/3-powers

w5/3 = 000010100001010000101000010100001020000101 · · ·

w5/3 = 0000101
0000101
0000101
0000101
0000102
0000101
0000102
0000101

...

w(7i + 6) = w(i) + 1

w5/3 = ϕ∞(0), where ϕ(n) = 000010(n + 1) is a 7-uniform morphism.
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A family related to w5/3

w9/5 w12/7 w13/7 w16/9 w17/9 w19/11 w20/11

Theorem (Pudwell–Rowland 2018)

Let 5
3 ≤

a
b < 2 with b odd. Then wa/b = ϕ∞(0), where

ϕ(n) = 0a−1 1 0a−b−1 (n + 1) is a (2a− b)-uniform morphism.

Eric Rowland The lexicographically least 5/4-power-free word on Z≥0 2020–01–15 6 / 15



Avoiding 3/2-powers

w3/2 = 001102100112001103100113001102100114001103 · · ·

Use two kinds of letters.
Alphabet: Σ2 = {nj : n ∈ Z, j ∈ {0,1}}
Coding: τ(nj) = n

6-uniform morphism:
ϕ(n0) = 0001101100(n + 2)1
ϕ(n1) = 1001001110(n + 2)1

Theorem (Rowland–Shallit 2012)
w3/2 = τ(ϕ∞(00)).
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w5/4 wrapped into 72 columns

w5/4 = 000011110202101001011212000013110102101302 · · ·

Eric Rowland The lexicographically least 5/4-power-free word on Z≥0 2020–01–15 8 / 15



w5/4 — first 2000 rows
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Large-scale structure

Write w5/4 = w(0)w(1) · · · .

w(72i + 31)i≥0:

1000 2000 3000 4000 5000

1

2

3

4

5

6

7

8

w(i)i≥0:

5000 10000 15000 20000 25000 30000

1

2

3

4

5

6

Implied relationship:

w(6i + 123061) = w(i + 5920) +


3 if i ≡ 0,2 mod 8
1 if i ≡ 4,6 mod 8
2 if i ≡ 1 mod 2
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Characterization of w5/4

Theorem (Rowland–Stipulanti)
There exist words p, z of lengths |p| = 6764 and |z| = 20226 such that
w5/4 = p τ(ϕ(z)ϕ2(z) · · · ).

z is a word on Σ8 = {nj : n ∈ Z,0 ≤ j ≤ 7}. z contains −10 and −12.

ϕ(n0) = 0011020314(n + 3)5
ϕ(n1) = 1617000102(n + 2)3
ϕ(n2) = 1415160700(n + 3)1
ϕ(n3) = 0213140516(n + 2)7
ϕ(n4) = 0011020314(n + 1)5
ϕ(n5) = 1617000102(n + 2)3
ϕ(n6) = 1415160700(n + 1)1
ϕ(n7) = 0213140516(n + 2)7
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Proof outline

1 Show that p τ(ϕ(z)ϕ2(z) · · · ) avoids 5
4 -powers.

2 Show that decreasing any letter in p τ(ϕ(z)ϕ2(z) · · · ) introduces a
5
4 -power ending at that position.

For previously studied words wa/b, Step 1 involves showing that ϕ is
a
b -power-free. That is, if w is a

b -power-free then ϕ(w) is a
b -power-free.

However, the morphism for w5/4 is not 5
4 -power-free:

For n,m ∈ Z, the word 04n5m6 is 5
4 -power-free, but its image is not:

ϕ(04n5m6) = 001102031415 1617000102(n + 2)3 1415160700(m + 1)1
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Pre-5
4-power-freeness

A word is pre-5
4 -power-free if every factor xyx ′ with |x | = 1

3 |y | = |x ′|
satisfies ϕ(x) 6= ϕ(x ′).
00n1n2n324 is not pre-5

4 -power-free because its image is a 5
4 -power:

ϕ(00n1n2n324) = 001102031435 ϕ(n1n2n3) 001102031435

If w is pre-5
4 -power-free, then w is 5

4 -power-free.

Proposition
Let Γ be the set

{−30,−32,−20,−21,−22,−23,−25,−27,−11,−13,−14,−15,−16,−17,04,06}.

If w ∈ (Σ8 \ Γ)∗ is pre-5
4 -power-free, then ϕ(w) is pre-5

4 -power-free.
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Proof strategy

1 Sequence of results for establishing 5
4 -power-freeness:

zϕ(z)ϕ2(z) · · · is pre-5
4 -power-free.

ϕ(zϕ(z)ϕ2(z) · · · ) is 5
4 -power-free.

τ(ϕ(z)ϕ2(z) · · · ) is 5
4 -power-free.

pτ(ϕ(z)ϕ2(z) · · · ) is 5
4 -power-free.

2 For establishing lexicographic leastness:

Case analysis and complicated induction.

Both steps involve large finite checks carried out programmatically.
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