Square-free words

Students: Siddharth Berera, Delanna Do, Alycia Doucette, Bridget Duah, Bill Feng, Mordechai Goldberger, Andrés Gómez-Colunga, Luke Hammer, Ziqi He, Joey Lakerdas-Gayle, Amanda Lamphere, Mary Olivia Liebig, Mauditra Matin, Jacob Micheletti, Adil Oryspayev, Dan Roebuck, Sara Salazar, Noam Scully, Shiyao Shen, Wangsheng Song, Thomas Sottosanti, Juliet Whidden Mentors: John López, Eric Rowland

> $\frac{1}{3}$ Mathematics Seminar Hofstra University, 2021–09–08

Combinatorics on words

Axel Thue (1863-1922)

Are there long words that don't contain repetitions?

Definition

A word on a set Σ is a sequence of elements from Σ .

Example: $\Sigma = \{0, 1\}$ w = 0110

We call Σ the "alphabet".

Definition

A square is a word of the form xx.

 $couscous = (cous)^2$ hotshots = $(hots)^2$ $0101 = (01)^2$

Are there arbitrarily long square-free words on the alphabet $\{0, 1\}$?

010<mark>X</mark>

Theorem (Thue 1906)

There exist arbitrarily long square-free words on the alphabet $\{0, 1, 2\}$.

Guay-Paquet & Shallit 2009: What is the lexicographically least infinite square-free word on $\mathbb{N}=\{0,1,2,\dots\}?$

0102010301020104 · · ·

This is known as the ruler sequence.

Let ρ be the morphism that replaces each letter *n* with 0(n+1).

$$\rho(0) = 01$$

$$\rho^{2}(0) = \rho(01) = 0102$$

$$\rho^{3}(0) = \rho(0102) = 01020103$$

:

$$\rho^{\infty}(0) = 0102010301020104 \cdots$$

Theorem (Guay-Paquet–Shallit 2009)

The lexicographically least square-free word on \mathbb{N} is $\rho^{\infty}(0)$.

But this description is not robust!

What is the lex. least infinite square-free word on \mathbb{N} beginning with 1?

10120102012021012010201203010201 · · ·

Very different word! Call it L(1). What is its structure? Is it generated by a morphism?

Structure of L(1)

After some prefix, L(1) consists of a word of the form $S_0 S_1 S_0 S_2 S_0 S_1 S_0 S_3 \cdots$. Look familiar?

 S_4

The word S_{n+1} is defined in terms of S_n .

Conjecture

 $L(1) = P_1 \alpha(\rho^{\infty}(0))$, where P_1 is a 5177-letter prefix and $\alpha(n) = S_n$.

Proof: in progress.

Theorem

There exists a sequence of words T_n , defined recursively, such that $L(2) = 2 \gamma(\rho^{\infty}(0))$, where $\gamma(n) = T_n$.

For $n \ge 3$, all L(n) seem to have the same tail!

Conjecture

 $L(n) = P_n \rho(\alpha(\rho^{\infty}(0)))$ for all $n \ge 3$, for some prefix P_n and $\alpha(n) = S_n$.

Longer prefixes

What if $|w| \ge 2$?

Theorem

If w can be written as w = ps where p consists of two or more letters all ≥ 3 , then L(w) = p[:-1]L(p[-1]s).

Ex. L(53) = 5L(3).

Theorem

 $L(\rho(w)) = \rho(L(w))$ for all words w.

Ex. $L(040805) = \rho(L(374)) = \rho(37L(4)).$

Open questions:

- What does *L*(*w*) look like in general?
- Are there only finitely many different tails that arise in *L*(*w*)?