Square-free words

Students: Siddharth Berera, Delanna Do, Alycia Doucette, Bridget Duah, Bill Feng, Mordechai Goldberger, Andrés Gómez-Colunga, Luke Hammer, Ziqi He, Joey Lakerdas-Gayle, Amanda Lamphere, Mary Olivia Liebig, Mauditra Matin, Jacob Micheletti, Adil Oryspayev, Dan Roebuck, Sara Salazar, Noam Scully, Shiyao Shen, Wangsheng Song,

Thomas Sottosanti, Juliet Whidden
Mentors: John López, Eric Rowland
> $\frac{1}{3}$ Mathematics Seminar
> Hofstra University, 2021-09-08

Combinatorics on words

Axel Thue (1863-1922)

Are there long words that don't contain repetitions?

Definition

A word on a set Σ is a sequence of elements from Σ.
Example: $\Sigma=\{0,1\} \quad w=0110 \quad$ We call Σ the "alphabet".

Definition

A square is a word of the form $x x$.

$$
\text { couscous }=(\text { cous })^{2} \quad \text { hotshots }=(\text { hots })^{2} \quad 0101=(01)^{2}
$$

Are there arbitrarily long square-free words on the alphabet $\{0,1\} ?$ 010X

Theorem (Thue 1906)

There exist arbitrarily long square-free words on the alphabet $\{0,1,2\}$.

Guay-Paquet \& Shallit 2009: What is the lexicographically least infinite square-free word on $\mathbb{N}=\{0,1,2, \ldots\}$?
$0102010301020104 \ldots$
This is known as the ruler sequence.

Let ρ be the morphism that replaces each letter n with $0(n+1)$.

$$
\begin{aligned}
\rho(0) & =01 \\
\rho^{2}(0) & =\rho(01)=0102 \\
\rho^{3}(0) & =\rho(0102)=01020103 \\
& \vdots \\
\rho^{\infty}(0) & =0102010301020104 \cdots
\end{aligned}
$$

Theorem (Guay-Paquet-Shallit 2009)
The lexicographically least square-free word on \mathbb{N} is $\rho^{\infty}(0)$.

Varying the prefix

But this description is not robust!

What is the lex. least infinite square-free word on \mathbb{N} beginning with 1 ?

10120102012021012010201203010201 ...

Very different word! Call it $L(1)$. What is its structure? Is it generated by a morphism?

Structure of $L(1)$

\square
Q

$\stackrel{S_{0}}{\leftarrow S_{0}} S_{1}$
After some prefix, $L(1)$ consists of a word of the form $S_{0} S_{1} S_{0} S_{2} S_{0} S_{1} S_{0} S_{3} \cdots$. Look familiar?

The word S_{n+1} is defined in terms of S_{n}.

Conjecture

$L(1)=P_{1} \alpha\left(\rho^{\infty}(0)\right)$, where P_{1} is a 5177-letter prefix and $\alpha(n)=S_{n}$.
Proof: in progress.

Theorem

There exists a sequence of words T_{n}, defined recursively, such that $L(2)=2 \gamma\left(\rho^{\infty}(0)\right)$, where $\gamma(n)=T_{n}$.

For $n \geq 3$, all $L(n)$ seem to have the same tail!

Conjecture

$L(n)=P_{n} \rho\left(\alpha\left(\rho^{\infty}(0)\right)\right)$ for all $n \geq 3$, for some prefix P_{n} and $\alpha(n)=S_{n}$.

Longer prefixes

What if $|w| \geq 2$?

Theorem

If w can be written as $w=p s$ where p consists of two or more letters all ≥ 3, then $L(w)=p[:-1] L(p[-1] s)$.

Ex. $L(53)=5 L(3)$.

Theorem

$L(\rho(w))=\rho(L(w))$ for all words w.
Ex. $L(040805)=\rho(L(374))=\rho(37 L(4))$.
Open questions:

- What does $L(w)$ look like in general?
- Are there only finitely many different tails that arise in $L(w)$?

