Regular Sequences

Eric Rowland

School of Computer Science University of Waterloo, Ontario, Canada

September 5 & 8, 2011

Eric Rowland (University of Waterloo)

Regular Sequences

September 5 & 8, 2011 1 / 38

Motivation and basic properties

2 Sampler platter

3 Relationships to other classes of sequences

Thue–Morse sequence:

 $a(n) = \begin{cases} 0 & \text{if the binary representation of } n \text{ has an even number of 1s} \\ 1 & \text{if the binary representation of } n \text{ has an odd number of 1s.} \end{cases}$

For $n \ge 0$, the Thue–Morse sequence is

 $01101001100101101001011001101001 \cdots$.

Rediscovered several times as an infinite cube-free word on $\{0, 1\}$.

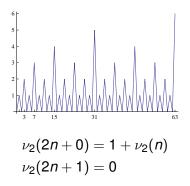
a(2n+0) = a(n)a(2n+1) = 1 - a(n)

My favorite sequence

Let $\nu_k(n)$ be the exponent of the largest power of k dividing n.

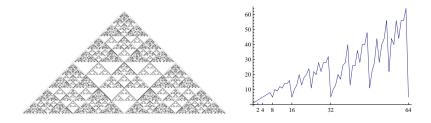
```
For n \ge 0, the "ruler sequence" \nu_2(n+1) is
```

 $01020103010201040102010301020105\cdots$.



Counting nonzero binomial coefficients modulo 8

Let $a(n) = |\{0 \le m \le n : \binom{n}{m} \neq 0 \mod 8\}|.$



1 2 3 4 5 6 7 8 5 10 9 12 11 14 14 16 5 10 13 20 13 18 20 24 \cdots

$$a(2n + 1) = 2a(n)$$

$$a(4n + 0) = a(2n)$$

$$a(8n + 2) = -2a(n) + 2a(2n) + a(4n + 2)$$

$$a(8n + 6) = 2a(4n + 2)$$

Definition

Convention: We index sequences starting at n = 0.

Definition (Allouche & Shallit 1992)

Let $k \ge 2$ be an integer. An integer sequence a(n) is *k*-regular if the \mathbb{Z} -module generated by the set of subsequences

$$\{a(k^e n + i) : e \ge 0, 0 \le i \le k^e - 1\}$$

is finitely generated.

We can take the generators to be elements of this set. Every $a(k^e n + i)$ is a linear combination of the generators.

In particular, $a(k^e(kn+j)+i)$ is a linear combination of the generators, which gives a finite set of recurrences that determine a(n).

Homogenization

For the Thue–Morse sequence:

$$a(2n+0) = a(n)$$

 $a(2n+1) = 1 - a(n)$

But we can homogenize:

$$a(2n) = a(n)$$

 $a(2n+1) = a(2n+1)$
 $a(4n+1) = a(2n+1)$
 $a(4n+3) = a(n)$

So a(n) and a(2n + 1) generate the \mathbb{Z} -module, and we have written a(2n+0), a(2n+1), a(2(2n+0)+1), a(2(2n+1)+1) as linear combinations of the generators.

Regular sequences inherit self-similarity from base-*k* representations of integers.

The *n*th term a(n) can be computed quickly — using $O(\log n)$ additions and multiplications.

The set of k-regular sequences is closed under...

- termwise addition
- termwise multiplication
- multiplication as power series
- shifting (b(n) = a(n + 1))
- modifying finitely many terms

Motivation and basic properties

3 Relationships to other classes of sequences

Eric Rowland (University of Waterloo)

Regular sequences are everywhere...

• The length *a*(*n*) of the base-*k* representation of *n* + 1 is a *k*-regular sequence:

$$a(kn+i)=1+a(n).$$

• The number of comparisons *a*(*n*) required to sort a list of length *n* using merge sort is

0 0 1 3 5 8 11 14 17 21 25 29 33 37 41 45

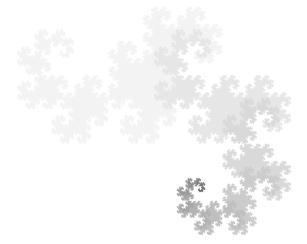
This sequence satisfies

$$a(n) = a(\left\lceil \frac{n}{2} \right\rceil) + a(\left\lfloor \frac{n}{2} \right\rfloor) + n - 1$$

and is 2-regular.

Dragon curve

The coordinates (x(n), y(n)) of paperfolding curves are 2-regular.



p-adic valuations of integer sequences

• $\nu_k(n+1)$ is *k*-regular:

$$a(kn + k - 1) = 1 + a(n)$$

 $a(kn + i) = 0$ if $i \neq k - 1$.

Bell 2007:

If f(x) is a polynomial, $\nu_p(f(n))$ is *p*-regular if and only if f(x) factors as

(product of linear polynomials over \mathbb{Q}) \cdot (polynomial with no roots in \mathbb{Z}_{ρ}).

- $\nu_p(n!)$ is *p*-regular.
- Closure properties imply that

$$\nu_{p}(C_{n}) = \nu_{p}((2n)!) - 2\nu_{p}(n!) - \nu_{p}(n+1)$$

is *p*-regular.

p-adic valuations of integer sequences

Medina–Rowland 2009: $\nu_p(F_n)$ is *p*-regular.

The Motzkin numbers *M_n* satisfy

$$(n+2)M_n - (2n+1)M_{n-1} - 3(n-1)M_{n-2} = 0.$$

Conjecture

If
$$p = 2$$
 or $p = 5$, then $\nu_p(M_n)$ is p-regular.

Open question

Given a polynomial-recursive sequence f(n), for which primes is $\nu_p(f(n))$ p-regular?

Eric Rowland (University of Waterloo)

Regular Sequences

"Number theoretic combinatorics"

 The sequence of integers expressible as a sum of distinct powers of 3 is 2-regular:

 $0 1 3 4 9 10 12 13 27 28 30 31 36 37 39 40 \cdots$ a(2n) = 3a(n)a(4n+1) = 6a(n) + a(2n+1)a(4n+3) = -3a(n) + 4a(2n+1)

• The sequence of integers whose binary representations contain an even number of 1s is 2-regular:

 $0\ 3\ 5\ 6\ 9\ 10\ 12\ 15\ 17\ 18\ 20\ 23\ 24\ 27\ 29\ 30\ \cdots$

 Let |n|_w be the number of occurrences of w in the base-k representation of n. For every word w, |n|_w is k-regular. Let $a_{p^{\alpha}}(n) = |\{0 \le m \le n : \binom{n}{m} \not\equiv 0 \mod p^{\alpha}\}|.$

Glaisher 1899:

$$a_2(n) = 2^{|n|_1}$$

• Fine 1947:

$$a_p(n)=\prod_{i=0}^l \left(n_i+1\right),$$

where $n = n_1 \cdots n_1 n_0$ in base *p*.

For example, $a_5(n) = 2^{|n|_1} 3^{|n|_2} 4^{|n|_3} 5^{|n|_4}$.

It follows that $a_p(n)$ is *p*-regular.

Nonzero binomial coefficients

Rowland 2011: Algorithm for obtaining a symbolic expression in *n* for $a_{p^{\alpha}}(n)$. It follows that $a_{p^{\alpha}}(n)$ is *p*-regular for each $\alpha \ge 0$.

For example:

$$a_{p^2}(n) = \left(\prod_{i=0}^{l} (n_i+1)\right) \cdot \left(1 + \sum_{i=0}^{l-1} \frac{p - (n_i+1)}{n_i+1} \cdot \frac{n_{i+1}}{n_{i+1}+1}\right).$$

Expressions for p = 2 and p = 3:

$$\begin{aligned} a_4(n) &= 2^{|n|_1} \left(1 + \frac{1}{2} |n|_{10} \right) \\ a_9(n) &= 2^{|n|_1} 3^{|n|_2} \left(1 + |n|_{10} + \frac{1}{4} |n|_{11} + \frac{4}{3} |n|_{20} + \frac{1}{3} |n|_{21} \right) \end{aligned}$$

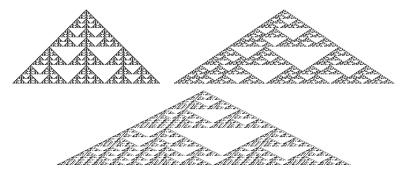
Higher powers of 2:

$$a_8(n) = 2^{|n|_1} \left(1 + \frac{1}{8} |n|_{10}^2 + \frac{3}{8} |n|_{10} + |n|_{100} + \frac{1}{4} |n|_{110} \right)$$

$$\begin{aligned} \frac{a_{16}(n)}{2^{|n|_1}} &= 1 + \frac{5}{12} |n|_{10} + \frac{1}{2} |n|_{100} + \frac{1}{8} |n|_{110} \\ &+ 2|n|_{1000} + \frac{1}{2} |n|_{1010} + \frac{1}{2} |n|_{1100} + \frac{1}{8} |n|_{1110} + \frac{1}{16} |n|_{10}^2 \\ &+ \frac{1}{2} |n|_{10} |n|_{100} + \frac{1}{8} |n|_{10} |n|_{110} + \frac{1}{48} |n|_{10}^3 \end{aligned}$$

Powers of polynomials

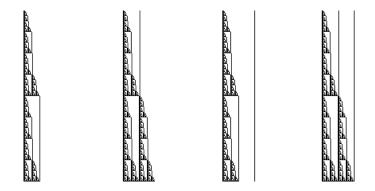
If $f(x) \in \mathbb{F}_{p^{\alpha}}[x]$, how many nonzero terms are there in $f(x)^n$? Such a sequence has an interpretation as counting cells in a cellular automaton. Here is $(x^d + x + 1)^n$ over \mathbb{F}_2 for d = 2, 3, 4:



Amdeberhan–Stanley ~2008: Let $f(x_1, ..., x_m) \in \mathbb{F}_{p^{\alpha}}[x_1, ..., x_m]$. The number a(n) of nonzero terms in the expanded form of $f(x_1, ..., x_m)^n$ is *p*-regular.

Another kind of self-similarity

Here is a cellular automaton that grows like \sqrt{n} :



The length of row *n* is 2-regular.

The number of black cells on row *n* is 2-regular.

Lexicographically extremal words avoiding a pattern

What is the lexicographically least square-free word on $\mathbb{Z}_{\geq 0}$?

01020103010201040102010301020105 ····

The *n*th term is $\nu_2(n+1)$.

The lexicographically least *k*-power-free word is given by $\nu_k(n+1)$.

k = 3:

00100100200100100200100100300100...

k = 4:

$00010001000100020001000100010002\cdots$

Lexicographically extremal words avoiding a pattern

If $w = w_1 w_2 \cdots w_l$ is a length-l word and $r \in \mathbb{Q}_{\geq 0}$ such that $r \cdot l \in \mathbb{Z}$, let

$$w^{r} = w^{\lfloor r \rfloor} w_{1} w_{2} \cdots w_{l \cdot (r - \lfloor r \rfloor)}$$

be the word consisting of repeated copies of w truncated at rl letters.

For example...

$$(deci)^{3/2} = decide$$

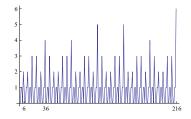
$$(raisonne)^{3/2} = raisonnerais$$

 $(schuli)^{3/2} = schulisch$

Lexicographically extremal words avoiding a pattern

What is the lexicographically least word on $\mathbb{Z}_{\geq 0}$ avoiding 3/2-powers?

001102100112001103100113001102100114 ...



Rowland–Shallit 2011: This sequence is 6-regular.

Open question

When are such sequences k-regular, and for what value of k?

Eric Rowland (University of Waterloo)

Regular Sequences

Motivation and basic properties

2 Sampler platter

3 Relationships to other classes of sequences

Constant-recursive sequences

The companion matrix of a constant-recursive sequence a(n) satisfies

$$M \cdot \begin{bmatrix} a(n) \\ a(n+1) \\ \vdots \\ a(n+r-1) \end{bmatrix} = \begin{bmatrix} a(n+1) \\ a(n+2) \\ \vdots \\ a(n+r) \end{bmatrix}$$

٠

For example,

$$\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} F_n \\ F_{n+1} \end{bmatrix} = \begin{bmatrix} F_{n+1} \\ F_n + F_{n+1} \end{bmatrix} = \begin{bmatrix} F_{n+1} \\ F_{n+2} \end{bmatrix}.$$

So

$$F_n = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}^n \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

In general $a(n) = \lambda M^n \kappa$.

Matrix formulation

Take *r* generators $a_1(n), \ldots, a_r(n)$ of a *k*-regular sequence. Each $a_i(kn + i)$ is a linear combination of the *r* generators.

Encode the coefficients in $r \times r$ matrices $M_0, M_1, \ldots, M_{k-1}$. Then if $n = n_1 \cdots n_1 n_0$ in base *k*, then

 $a(n) = \lambda M_{n_1} \cdots M_{n_1} M_{n_0} \kappa.$

Again consider the Thue–Morse sequence; generators a(n), a(2n + 1).

$$a(2n) = 1 \cdot a(n) + 0 \cdot a(2n+1)$$

$$a(2n+1) = 0 \cdot a(n) + 1 \cdot a(2n+1)$$

$$a(2(2n+0) + 1) = 0 \cdot a(n) + 1 \cdot a(2n+1)$$

$$a(2(2n+1) + 1) = 1 \cdot a(n) + 0 \cdot a(2n+1)$$

Then

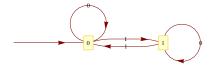
$$M_0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad M_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Corollaries...

- In a sense, constant-recursive sequences are "1-regular".
- A *k*-regular sequence has constant-recursive subsequences. For example, $a(k^n) = \lambda M_1 M_0^n \kappa$.
- If a(n) is k-regular, then $a(n) = O(n^d)$ for some d.

A sequence a(n) is *k*-automatic if there is a finite automaton whose output is a(n) when fed the base-*k* digits of *n*.

The Thue–Morse sequence is 2-automatic:

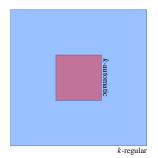


Allouche–Shallit 1992:

A *k*-regular sequence is finite-valued if and only if it is *k*-automatic.

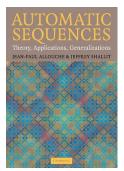
Hierarchy of integer sequences

Fix $k \ge 2$.



Eric Rowland (University of Waterloo)

Automatic sequences have been very well studied.

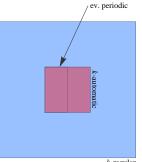


Charlier–Rampersad–Shallit 2011: Many operations on *k*-automatic sequences produce *k*-regular sequences.

Büchi 1960:

If a(n) is eventually periodic, then a(n) is k-automatic for every $k \ge 2$.

We add eventually periodic sequences:

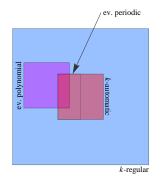


The sequence a(n) = n is k-regular for every $k \ge 2$:

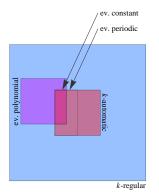
$$a(kn + i) = k(1 - i)a(n) + i a(kn + 1)$$
$$a(k^2n + i) = k(k - i)a(n) + i a(kn + 1)$$

It follows that every polynomial sequence is *k*-regular (as every polynomial sequence is constant-recursive).

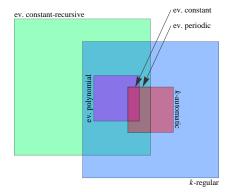
Every (eventually) polynomial sequence is *k*-regular.



If a(n) is eventually polynomial and k-automatic, then a(n) is eventually constant.



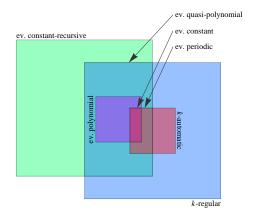
Every polynomial sequence is constant-recursive. (And not every *k*-automatic sequence is constant-recursive.)



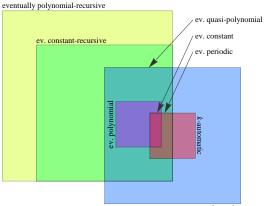
Hierarchy of integer sequences

Allouche–Shallit 1992:

If a(n) is constant-recursive and k-regular, then a(n) is eventually quasi-polynomial.



And to entice us...



k-regular

• By Bell's theorem, $\nu_2(n^2 + 7)$ is not 2-regular.

03040503030704030304060303050403 ···

• Bell ~2005, Moshe 2008, Rowland 2010: $\lfloor \alpha + \log_k(n+1) \rfloor$ is *k*-regular if and only if k^{α} is rational. For example, $\lfloor \frac{1}{2} + \log_2(n+1) \rfloor$ is not 2-regular.

Is there a natural (larger) class that these sequences belong to?

Two generalizations of *k*-regular sequences:

- Allow polynomial coefficients in *n* (analogous to polynomial-recursive sequences).
- Becker 1994, Dumas 1993, Randé 1992: If a(n) is *k*-regular, then $f(x) = \sum_{n=0}^{\infty} a(n)x^n$ satisfies a Mahler functional equation

$$\sum_{i=0}^m p_i(x)f(x^{k^i})=0.$$

How natural are these generalizations?

It remains to be seen...