Powers of a sequence satisfying a recurrence

Eric Rowland and Jesús Sistos Barrón

Mathematics Seminar
Hofstra University, 2023-09-13

Fibonacci sequence:
$0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610, \ldots$

Definition:
$F(0)=0$
$F(1)=1$
$F(n+2)=F(n+1)+F(n)$ for all $n \geq 0$.

Question

Do powers of the Fibonacci sequence also satisfy recurrences? Why would we even ask that question?

Fibonacci sequence:
$0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610, \ldots$
$F(n)^{2}$:
$0,1,1,4,9,25,64,169,441,1156,3025,7921,20736,54289,142129, \ldots$

Can we guess a recurrence?

$$
\begin{aligned}
& a F(n)^{2}+b F(n+1)^{2}=F(n+2)^{2} \\
& n=0: \quad 0 a+1 b=1 \\
& n=1: \quad 1 a+1 b=4 \\
& n=2: \quad 1 a+4 b=9
\end{aligned}
$$

$b=1$ and $a=3$, but then $a+4 b=3+4=7 \neq 9$. No solution!
$F(n):$
$0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610, \ldots$
$F(n)^{2}$:
$0,1,1,4,9,25,64,169,441,1156,3025,7921,20736,54289,142129, \ldots$
Can we guess a larger recurrence?

$$
\begin{gathered}
a F(n)^{2}+b F(n+1)^{2}+c F(n+2)^{2}=F(n+3)^{2} \\
\qquad \begin{array}{cl}
n=0: & 0 a+1 b+1 c=4 \\
n=1: & 1 a+1 b+4 c=9 \\
n=2: & 1 a+4 b+9 c=25
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
& a=-1, b=2, c=2 \\
& s(n)=F(n)^{2} \text { seems to satisfy } s(n+3)=2 s(n+2)+2 s(n+1)-s(n) .
\end{aligned}
$$

m	recurrence for $F(n)^{m}$	size
0	$s(n+1)=s(n)$	1
1	$s(n+2)=s(n+1)+s(n)$	2
2	$s(n+3)=2 s(n+2)+2 s(n+1)-s(n)$	3
3	$s(n+4)=3 s(n+3)+6 s(n+2)-3 s(n+1)-s(n)$	4
4	$s(n+5)=5 s(n+4)+15 s(n+3)-15 s(n+2)-5 s(n+1)+s(n)$	5

What are these coefficients?

More basic: Why does the recurrence for $F(n)^{m}$ have size $m+1$?
Even more basic: Why do powers of Fibonacci satisfy recurrences?

Fibonacci belongs to a class of sequences with nice closure properties.

Theorem

Let $s(n)_{n \geq 0}$ and $t(n)_{n \geq 0}$ be constant-recursive sequences. Then $(s(n)+t(n))_{n \geq 0}$ and $(s(n) t(n))_{n \geq 0}$ are also constant-recursive sequences.

The Hierarchy of Integer Sequences: https://ericrowland.github.io/THIS.html

```
(Chapter 15)
```

Moreover, suppose the recurrences for $s(n)_{n \geq 0}, t(n)_{n \geq 0}$ have sizes r_{1}, r_{2}.
$(s(n)+t(n))_{n \geq 0}$ satisfies a recurrence with size $r_{1}+r_{2}$. $(s(n) t(n))_{n \geq 0}$ satisfies a recurrence with size $r_{1} r_{2}$.
$\left(F(n)^{2}\right)_{n \geq 0}$ satisfies a recurrence with size 4.

Why does the minimal recurrence for $F(n)^{2}$ have size 3?
$F(n+2)-F(n+1)-F(n)=0$
Characteristic polynomial: $x^{2}-x-1$
Roots: $\phi=\frac{1+\sqrt{5}}{2}$ and $\bar{\phi}=\frac{1-\sqrt{5}}{2}$
Binet's formula:

$$
F(n)=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Write $F(n)=c \phi^{n}+d \bar{\phi}^{n}$.
Then $F(n)^{2}=c^{2} \phi^{2 n}+2 c d(\phi \bar{\phi})^{n}+d^{2} \bar{\phi}^{2 n}$

$$
=c^{2} \phi^{2 n}+2 c d(-1)^{n}+d^{2} \bar{\phi}^{2 n} .
$$

Polynomial: $(x+1)\left(x-\phi^{2}\right)\left(x-\bar{\phi}^{2}\right)=x^{3}-2 x^{2}-2 x+1$. Recurrence: $s(n+3)-2 s(n+2)-2 s(n+1)+s(n)=0$

Why does the recurrence for $F(n)^{m}$ have size $m+1$?
Products of 2 elements of $\{\phi, \bar{\phi}\}: \phi^{2}, \phi \bar{\phi}, \bar{\phi}^{2}$ Products of 3 elements of $\{\phi, \bar{\phi}\}: \phi^{3}, \phi^{2} \bar{\phi}, \phi \bar{\phi}^{2}, \bar{\phi}^{3}$

Products of m elements of $\{\phi, \bar{\phi}\}: \phi^{m}, \phi^{m-1} \bar{\phi}, \ldots, \phi \bar{\phi}^{m-1}, \bar{\phi}^{m}$ $m+1$ products, and they're all distinct.

General powers:

Theorem

If $m \geq 0$ and $s(n)_{n \geq 0}$ is a constant-recursive sequence with rank r, then $\left(s(n)^{m}\right)_{n \geq 0}$ is constant-recursive with rank $\leq\binom{ m+r-1}{m}$.

$$
r=2: \quad\binom{m+r-1}{m}=\binom{m+1}{m}=\frac{(m+1)!}{m!1!}=m+1
$$

Powers of Fibonacci attain the upper bound!

Upper bound for $r=3: \quad\binom{m+r-1}{m}=\binom{m+2}{m}=\frac{(m+2)!}{m!2!}=\frac{(m+1)(m+2)}{2}$ $1,3,6,10,15,21,28,36, \ldots$

Are there sequences that don't attain the upper bound?

$$
\begin{array}{ll}
\text { recurrence } & \left(\operatorname{rank}\left(s(n)^{m}\right)_{n \geq 0}\right)_{m>0} \\
\hline s(n+3)=s(n+2)+s(n+1)+s(n) & 1,3,6,10,15,21,28,36, \ldots \\
s(n+3)=8 s(n+2)-8 s(n+1)-8 s(n) & 1,3,6,10,14,18,22,26, \ldots \\
s(n+3)=-5 s(n+2)-10 s(n+1)-12 s(n) & 1,3,6,8,11,13,16,18, \ldots \\
s(n+3)=-s(n+2)-15 s(n+1)-15 s(n) & 1,3,5,7,9,11,13,15, \ldots \\
s(n+3)=-4 s(n+2)-8 s(n+1)-8 s(n) & 1,3,5,6,6,6,6,6, \ldots \\
s(n+3)=-2 s(n+2)-4 s(n+1)-8 s(n) & 1,3,4,4,4,4,4,4, \ldots \\
\end{array}
$$

At least 6 different behaviors for rank- 3 sequences. How many are there?

Partial motivation for all of this. . .

In 1976, George Andrews rediscovered Ramanujan's "lost notebook".
$s(n)_{n \geq 0}: 1,135,11161,926271,76869289,6379224759,529398785665, \ldots$ $t(n)_{n \geq 0}: 2,138,11468,951690,78978818,6554290188,543927106802, \ldots$
$u(n)_{n \geq 0}: 2,172,14258,1183258,98196140,8149096378,676276803218, \ldots$
Each sequence satisfies $s(n+3)=82 s(n+2)+82 s(n+1)-s(n)$.

$$
s(n)^{3}+t(n)^{3}=u(n)^{3}+(-1)^{n} \text { for all } n \geq 0
$$

Characteristic polynomial: $x^{3}-82 x^{2}-82 x+1$
Roots: $-1, \frac{83+9 \sqrt{85}}{2}, \frac{83-9 \sqrt{85}}{2}$

$$
\frac{83+9 \sqrt{85}}{2} \cdot \frac{83-9 \sqrt{85}}{2}=1
$$

Size of the recurrence for $s(n)^{m}: 1,3,5,7,9,11,13,15, \ldots \quad$ Not maximal!

