Pattern avoidance in words

Julia Carrigan, Isaiah Hollars, Eric Rowland

$\frac{1}{3}$ Mathematics Seminar Hofstra University, 2022–09–16

Definition

A word on a set Σ is a sequence of elements from Σ .

For this talk: $\Sigma = \{0, 1\}$ (the "alphabet") Example: w = 0110

Pattern containment:

Example

0110 contains 11 (as a contiguous subword). 0110 avoids 00. How many length-n words avoid 01?

length 0:	ϵ	1
length 1:	0,1	2
length 2:	00, 10, 11	3
length 3:	000, 100, 110, 111	4
÷		÷
length <i>n</i> :		n+1

How many length-n words avoid 10?

```
length 3: 000,001,011,111 4
```

Also n+1.

There is a bijection from words avoiding 01 to words avoiding 10. (Actually two bijections!)

How many length-n words avoid 00?

length 0:	ϵ	1
length 1:	0, 1	2
length 2:	01, 10, 11	3
length 3:	010, 011, 101, 110, 111	5
length 4:	0101, 0110, 0111, 1010, 1011, 1101, 1110, 1111	8
:		÷
length <i>n</i> :		F(n + 2)

How many length-*n* words avoid 11? Also F(n+2).

Definition

Two patterns are avoiding-equivalent if they are avoided by the same number of length-n words for all $n \ge 0$.

Length-2 patterns come in two equivalence classes: $\{01, 10\}$ and $\{00, 11\}$.

What are the equivalence classes of length-3 patterns?

pattern <i>p</i>	number of length- n words avoiding p for $n = 0, 1,$
000	$1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, \ldots$
001	$1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 232, \ldots$
010	$1, 2, 4, 7, 12, 21, 37, 65, 114, 200, 351, \ldots$
011	$1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 232, \ldots$
100	$1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 232, \ldots$
101	$1, 2, 4, 7, 12, 21, 37, 65, 114, 200, 351, \ldots$
110	$1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 232, \ldots$
111	$1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, \ldots$

Equivalence classes: {000, 111}, {010, 101}, {001, 011, 100, 110}

No surprises.

What are the equivalence classes of length-4 patterns?

equivalence class	self-overlap lengths			
{0000, 1111}	1, 2, 3, 4			
$\{0101, 1010\}$	2,4			
$\{ {\color{red} 0010}, {\color{red} 0110}, {\color{red} 0110}, {\color{red} 1001}, {\color{red} 1011}, {\color{red} 1101} \}$	1} 1,4			
$\{ 0001, 0011, 0111, 1000, 1100, 1110 \}$)} 4			
Surprise!				
Where does 0110 overlap itself?				
0110 0110 01	0110			
0110 0110 011	0110			
Theorem (Solovyov 1966, Guibas 1979)				

If two patterns have the same set of self-overlap lengths, then they are avoiding-equivalent.

Proof: Generating series.

Is there a bijective proof?

Question

If two patterns p, q are avoiding-equivalent, is there a **natural** bijection from the length-n words avoiding p to the length-n words avoiding q?

length-4 words avoiding $p = 011$:	length-4 words avoiding $q = 001$:
0000	0000
$0001\mapsto 0111$	0100
$0010\mapsto 0110$	0101
0100	0110
0101	0111
1000	1000
$1001 \mapsto 1011$	1010
1010	1011
1100	1100
1101	1101
1110	1110
1111	1111

Idea: Replace all instances of q with p. $0001 \mapsto 0011 \mapsto 0111$

Let ϕ_L be the map that iteratively replaces the leftmost q with p.

Let $A_n(p)$ denote the set of length-*n* words that avoid *p*.

Lemma

If p, q are equal-length patterns and $w \in A_n(p)$, then $\phi_L(w) \in A_n(q)$.

A border of p is a subword that is both a prefix and a suffix of p.

Theorem

Let p, q be patterns such that every nontrivial border of p is also a border of q. Then ϕ_L is a bijection from $A_n(p)$ to $A_n(q)$.

p=011 and q=001 have no nontrivial borders. \checkmark

Non-example

p = 0100 and q = 1011 both have length-1 borders, but $0 \neq 1$. $\phi_L(1011110) = 0100110$. $\phi_L(0101011) = 0100100 = \phi_L(1011100)$. Not a bijection!