Pattern avoidance in words

Julia Carrigan, Isaiah Hollars, Eric Rowland

$\frac{1}{3}$ Mathematics Seminar
Hofstra University, 2022-09-16

Definition

A word on a set Σ is a sequence of elements from Σ.
For this talk: $\Sigma=\{0,1\}$ (the "alphabet")
Example: $w=0110$

Pattern containment:
Example
0110 contains 11 (as a contiguous subword). 0110 avoids 00 .

How many length- n words avoid 01 ?
length 0 : ϵ1
length 1: $\quad 0,1 \quad 2$
length 2: $\quad 00,10,11 \quad 3$
length 3: $000,100,110,1114$
length n :

$$
n+1
$$

How many length- n words avoid 10 ?
length 3: 000, 001, 011, 1114
Also $n+1$.

There is a bijection from words avoiding 01 to words avoiding 10. (Actually two bijections!)

How many length- n words avoid 00 ?

length 0:	ϵ	1
length 1:	0,1	2
length 2:	$01,10,11$	3
length 3:	$010,011,101,110,111$	5
length 4:	$0101,0110,0111,1010,1011,1101,1110,1111$	8
\vdots	$F(n+2)$	

How many length- n words avoid 11? Also $F(n+2)$.

Definition

Two patterns are avoiding-equivalent if they are avoided by the same number of length- n words for all $n \geq 0$.

Length-2 patterns come in two equivalence classes: $\{01,10\}$ and $\{00,11\}$.

What are the equivalence classes of length-3 patterns?

pattern p	number of length $-n$ words avoiding p for $n=0,1, \ldots$
000	$1,2,4,7,13,24,44,81,149,274,504, \ldots$
001	$1,2,4,7,12,20,33,54,88,143,232, \ldots$
010	$1,2,4,7,12,21,37,65,114,200,351, \ldots$
011	$1,2,4,7,12,20,33,54,88,143,232, \ldots$
100	$1,2,4,7,12,20,33,54,88,143,232, \ldots$
101	$1,2,4,7,12,21,37,65,114,200,351, \ldots$
110	$1,2,4,7,12,20,33,54,88,143,232, \ldots$
111	$1,2,4,7,13,24,44,81,149,274,504, \ldots$

Equivalence classes: $\{000,111\},\{010,101\},\{001,011,100,110\}$
No surprises.

What are the equivalence classes of length-4 patterns?

equivalence class	self-overlap lengths
$\{0000,1111\}$	$1,2,3,4$
$\{0101,1010\}$	2,4
$\{0010,0100,0110,1001,1011,1101\}$	1,4
$\{0001,0011,0111,1000,1100,1110\}$	4

Surprise!
Where does 0110 overlap itself?

Theorem (Solovyov 1966, Guibas 1979)

If two patterns have the same set of self-overlap lengths, then they are avoiding-equivalent.

Proof: Generating series.
Is there a bijective proof?

Question

If two patterns p, q are avoiding-equivalent, is there a natural bijection from the length-n words avoiding p to the length-n words avoiding q ?
length-4 words avoiding $p=011$:
0000
$0001 \mapsto 0111$
$0010 \mapsto 0110$
0100
0101
1000
$1001 \mapsto 1011$
1010
1100
1101
1110
1111
length-4 words avoiding $q=001$:
0000
0100
0101
0110
0111
1000
1010
1011
1100
1101
1110
1111

Idea: Replace all instances of q with $p . \quad 0001 \mapsto 0011 \mapsto 0111$

Let ϕ_{L} be the map that iteratively replaces the leftmost q with p.
Let $A_{n}(p)$ denote the set of length- n words that avoid p.

Lemma

If p, q are equal-length patterns and $w \in A_{n}(p)$, then $\phi_{L}(w) \in A_{n}(q)$.

A border of p is a subword that is both a prefix and a suffix of p.

Theorem

Let p, q be patterns such that every nontrivial border of p is also a border of q. Then ϕ_{L} is a bijection from $A_{n}(p)$ to $A_{n}(q)$.
$p=011$ and $q=001$ have no nontrivial borders.

Non-example

$p=0100$ and $q=1011$ both have length- 1 borders, but $0 \neq 1$.
$\phi_{L}(1011110)=0100110$.
$\phi_{L}(0101011)=0100100=\phi_{L}(1011100) . \quad$ Not a bijection!

