Pattern Avoidance in Binary Trees

Eric Rowland

Mathematics Department Tulane University, New Orleans, USA

June 22, 2011

Eric Rowland (Tulane University)

Pattern Avoidance in Binary Trees

Binary trees with \leq 5 leaves:

Patterns are contiguous. For example, let t = 4.

Small binary trees containing...

What is the number a(n) of *n*-leaf binary trees avoiding *t*?

1-leaf tree patterns: $t = \cdot$. a(n) = 0.

2-leaf tree patterns: $t = \mathbf{A}$. a(1) = 1; a(n) = 0 for $n \ge 2$.

3-leaf tree patterns: 4 and 4. "Typical" tree avoiding 4: a(n) = 1.

4-leaf tree patterns

4-leaf tree patterns: 4 4 4 4 4

• $t = \bigwedge$. A "typical" tree avoiding *t* looks like

$$a(1) = 1$$
; $a(n) = 2^{n-2}$ for $n \ge 2$.

•
$$t =$$
 A "typical" tree avoiding t looks like

$$a(1) = 1$$
; $a(n) = 2^{n-2}$ for $n \ge 2$.

These two patterns are equivalent.

Donaghey and Shapiro showed that $a(n) = M_{n-1}$.

Generating functions algorithm

Let
$$\operatorname{Av}_t(x) = \sum_{T \text{ avoids } t} x^{\operatorname{number of vertices in } T} = \sum_{n=0}^{\infty} a(n) x^n.$$

Consider the tree pattern

$$t = \bigwedge_{t_l t_r}$$
, where $t_l = \cdot$ and $t_r = \bigwedge_{t_r}$.

For a given tree pattern p, let

weight(p) := $\sum_{T \text{ matches } p \text{ and avoids } t} x^{\text{number of vertices in } T}$.

Begin with weight(\cdot) = x + weight(\cdot); rewrite weight(\cdot) by

weight
$$(\bigwedge_{p_l p_r}) = x \cdot (\text{weight}(p_l) \cdot \text{weight}(p_r) - \text{weight}(p_l \cap t_l) \cdot \text{weight}(p_r \cap t_r)).$$

System of polynomial equations

weight(*) =
$$x \cdot (\text{weight}(\cdot) \cdot \text{weight}(\cdot) - \text{weight}(\cdot \cap \cdot) \cdot \text{weight}(\cdot \cap \diamond))$$

= $x \cdot (\text{weight}(\cdot)^2 - \text{weight}(\cdot) \cdot \text{weight}(\diamond))$

weight(\diamondsuit) = $x \cdot (weight(\cdot) \cdot weight(\bigstar) - weight(\cdot \cap \cdot) \cdot weight(\bigstar \cap \diamondsuit))$ = $x \cdot (weight(\cdot) \cdot weight(\bigstar) - weight(\cdot) \cdot weight(\bigstar))$

$$\begin{split} \text{weight}(\bigstar) &= x \cdot (\text{weight}(\bigstar) \cdot \text{weight}(\cdot) - \text{weight}(\bigstar \cap \cdot) \cdot \text{weight}(\cdot \cap \bigstar)) \\ &= x \cdot (\text{weight}(\bigstar) \cdot \text{weight}(\cdot) - \text{weight}(\bigstar) \cdot \text{weight}(\bigstar)) \\ \text{weight}(\bigstar) &= x \cdot (\text{weight}(\bigstar) \cdot \text{weight}(\bigstar) - \text{weight}(\bigstar \cap \cdot) \cdot \text{weight}(\bigstar \cap \bigstar)) \\ &= x \cdot (\text{weight}(\bigstar) \cdot \text{weight}(\bigstar) - \text{weight}(\bigstar) \cdot \text{weight}(\bigstar)) \end{split}$$

No new variables. Eliminate the four auxiliary variables to obtain

$$x^{3} \operatorname{Av}_{t}(x)^{2} - (x^{2} - 1)^{2} \operatorname{Av}_{t}(x) - x(x^{2} - 1) = 0.$$

The algorithm terminates:

Since depth($p \cap p'$) \leq max(depth(p), depth(p')) and there are only finitely many trees shallower than t, there are finitely many variables.

Final step:

Eliminating all variables except x and weight(\cdot) = Av_t(x) entails computing a Gröbner basis for the system, which may take time.

Theorem $Av_t(x)$ is algebraic.

And the algebraic equation can be constructed mechanically.

The enumerating generating function

$$\mathsf{En}_t(x,y) = \sum_T x^{\text{number of vertices in } T} y^{\text{number of copies of } t \text{ in } T}$$

is algebraic.

Conjecture

If s and t are avoiding-equivalent, then they are also enumerating-equivalent.

The generating function that enumerates trees with respect to multiple patterns is also algebraic.

5-leaf equivalence classes

A computer implementation establishes all equivalence classes for binary trees up to 8 leaves.

For $m = 1, 2, 3, \ldots$, there are $1, 1, 1, 2, 3, 7, 15, 44, \ldots$ equivalence classes of *m*-leaf binary trees.

For 5-leaf tree patterns...

The other 10 tree patterns are equivalent:

6-leaf equivalence classes

Can we easily tell when *s* and *t* are equivalent?

How many length-*n* words on an alphabet avoid a certain (contiguous) subword?

The answer depends only on the self-overlap lengths of the subword.

Equivalence classes of length-4 words on the alphabet $\{0, 1\}$:

equivalence class	self-overlap lengths			
$\{0001, 0011, 0111, 1000, 1100, 1110\}$	{4}			
{0010,0100,0110,1001,1011,1101}	{1,4}			
{0101, 1010}	{2,4}			
{0000,1111}	$\{1, 2, 3, 4\}$			

For trees, one might hope for the same criterion: "*s* and *t* are equivalent precisely when their self-overlaps coincide."

The self-overlap lengths seem to be preserved under equivalence.

But the statement is not true in general. Counterexample:

Both classes have overlap lengths $\{1, 1, 2, 2, 5\}$.

Given two equivalent tree patterns *s* and *t*, can we find a bijective proof of the equivalence?

For example, \bigwedge and \bigwedge are equivalent. Let *T* avoid \bigwedge . Idea: Replace all instances of \bigwedge with \bigwedge . How?

What order? top-down. For example:

The inverse map is a *bottom-up replacement* with the inverse replacement rule:

For example:

Generally, we may individually try all *m*! permutations of leaves.

Permutations whose replacements prove equivalence for pairs of 5-leaf trees:

	t ₂	t ₃	t_4	t ₆	t7	t ₈	t ₉	t ₁₁	t ₁₂	t ₁₃
t ₂	—	14235		43125						
t ₃		—	12534	31245					51234	
t ₄		12453	_			41235				
t ₆				—	12534	45123				
t7				12453	—		45123			
t ₈				34512		—	31245			
t ₉					34512	23145	_			
t ₁₁					13452			—	31245	
t ₁₂		23451					12453	23145	—	
t ₁₃							14532		13425	—

Not every pair of equivalent trees can be shown equivalent by such a bijection. However, the following appears to hold.

Conjecture

Two binary tree patterns s and t are equivalent if and only if there is a sequence of

- top-down replacements,
- bottom-up replacements, and
- Ieft-right reflections

that produces a bijection from binary trees avoiding s to binary trees avoiding t.

The conjecture is true for tree patterns of \leq 7 leaves.

What is the growth rate of the sequence 1, 1, 1, 2, 3, 7, 15, 44, ... that counts the equivalence classes of *m*-leaf binary tree patterns for m = 1, 2, 3, ...?

Is there a simple characterization of the permutations of leaves that establish the equivalence of s and t?

Is there a simple characterization of the binary tree patterns that are equivalent to *t*?

2010 REU students at Valparaiso University:

Nathan Gabriel, Katie Peske, and Sam Tay classified ternary tree patterns with \leq 9 leaves and introduced a representation of trees as sets of words that provides a new class of bijections.

2011 REU students:

Mike Dairyko, Samantha Tyner, and Casey Wynn are studying avoidance of non-contiguous binary tree patterns. Work in progress...

