
Growth of one-dimensional cellular automata

Charles Brummitt and Eric Rowland

LaCIM
Université du Québec à Montréal

January 6, 2012

Eric Rowland (LaCIM) Growth of one-dimensional cellular automata January 6, 2012 1 / 15



Outline

1 What is a cellular automaton?

2 Growth rates

3 Growth exponents

Eric Rowland (LaCIM) Growth of one-dimensional cellular automata January 6, 2012 2 / 15



One-dimensional cellular automata

alphabet Σ of size k (for example {0,1, . . . , k − 1})
function i : Z→ Σ (the initial condition)
function f : Σd → Σ (the update rule)
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Wolfram: Look at all kkd
k -color rules depending on d cells.
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Row lengths

`(n) = width of region on row n that differs from the background

For example, `(n) = 2n + 1.

Upper bound: `(n) ≤ (d − 1)n + c.

For many automata, `(n) grows linearly.
In particular, if `(n + 1)− `(n) is eventually periodic.
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Automated–manual search

For k = 2 and d ≤ 3, the only growth rates are 0,1,3/2,2.

What happens for larger d?

There are 224
= 65536 2-color rules depending on d = 4 cells.

Consider each rule begun from · · ·������� · · ·
and · · ·������� · · · .

Filter out automata with sequences `(n + 1)− `(n)
that seem to be eventually periodic.

Examine the remaining automata manually for reducibility.

For the remaining automata, fit curves to `(n).
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Interesting slopes for d = 4

107�69 155�82 119�83

129�94 189�107 174�119

297�127 329�199 398�247

515�318 773�411 1578�1013
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Existence of growth rate

Growth is linear:
c1n < `(n) < c2n

But lim
n→∞

`(n)

n
does not exist.

lim inf `(n)/n = 6/5
lim sup `(n)/n = 3/2
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Automata with the same boundary structure
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Square-root growth

Some automata grow like
√

n:

Rule 106 depending on 3 cells.

Rule 39780 depending on 4 cells.
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Chaotic boundaries
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Data

Data we can store for `(n):

exact growth rate and period length (for reducible linear growth)
approximate growth rate (for irreducible linear growth)
morphism (for fractal boundaries)
approximate growth exponent

What do we do with this cellular automaton data?

Make it programmatically accessible in a Mathematica package.
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Existence of growth exponent

Does lim
n→∞

logn `(n) necessarily exist? No!

Graft a squaring automaton onto rule 106.

The result is an 18-color rule with d = 4.

lim inf logn `(n) = 1/2
lim sup logn `(n) = 1
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