Growth of one-dimensional cellular automata

Charles Brummitt and Eric Rowland

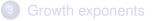
LaCIM Université du Québec à Montréal

January 6, 2012

Eric Rowland (LaCIM)

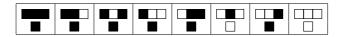
Growth of one-dimensional cellular automata

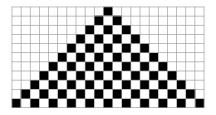
2 Growth rates



One-dimensional cellular automata

- alphabet Σ of size k (for example $\{0, 1, \dots, k-1\}$)
- function $i : \mathbb{Z} \to \Sigma$ (the initial condition)
- function $f: \Sigma^d \to \Sigma$ (the update rule)

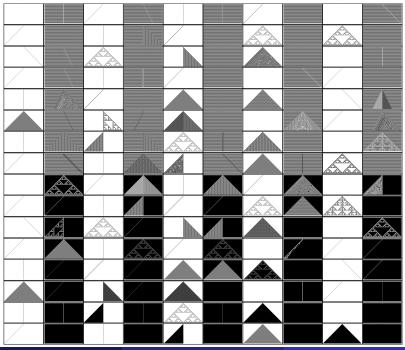




Wolfram: Look at all k^{k^d} k-color rules depending on d cells.

Eric Rowland (LaCIM)

Growth of one-dimensional cellular automata

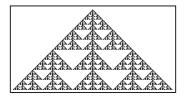


Eric Rowland (LaCIM)

Growth of one-dimensional cellular automata

January 6, 2012 4 / 15

 $\ell(n)$ = width of region on row *n* that differs from the background



For example, $\ell(n) = 2n + 1$.

Upper bound: $\ell(n) \leq (d-1)n + c$.

For many automata, $\ell(n)$ grows linearly. In particular, if $\ell(n+1) - \ell(n)$ is eventually periodic.

Automated-manual search

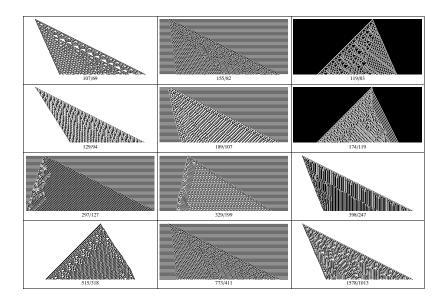
For k = 2 and $d \le 3$, the only growth rates are 0, 1, 3/2, 2.

What happens for larger d?

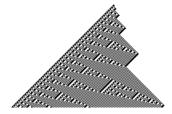
There are $2^{2^4} = 65536$ 2-color rules depending on d = 4 cells.

- Filter out automata with sequences ℓ(n + 1) − ℓ(n) that seem to be eventually periodic.
- Examine the remaining automata manually for reducibility.
- For the remaining automata, fit curves to $\ell(n)$.

Interesting slopes for d = 4



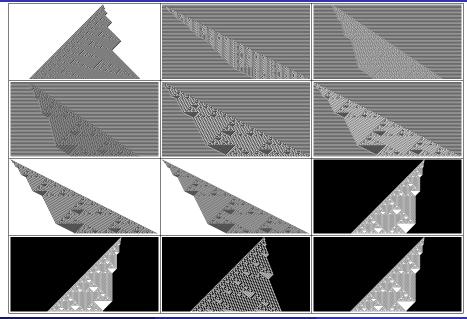
Existence of growth rate



Growth is linear: $c_1 n < \ell(n) < c_2 n$

- But $\lim_{n\to\infty} \frac{\ell(n)}{n}$ does not exist.
 - $\liminf \ell(n)/n = 6/5$
 - $\limsup \ell(n)/n = 3/2$

Automata with the same boundary structure

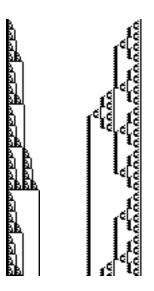


Eric Rowland (LaCIM)

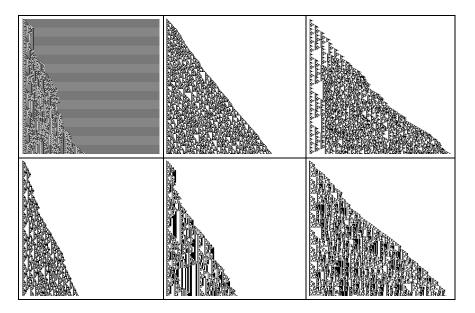
Growth of one-dimensional cellular automata

Some automata grow like \sqrt{n} :

- Rule 106 depending on 3 cells.
- Rule 39780 depending on 4 cells.



Chaotic boundaries



Data we can store for $\ell(n)$:

- exact growth rate and period length (for reducible linear growth)
- approximate growth rate (for irreducible linear growth)
- morphism (for fractal boundaries)
- approximate growth exponent

What do we do with this cellular automaton data?

Make it programmatically accessible in a *Mathematica* package.

Existence of growth exponent

Does $\lim_{n\to\infty} \log_n \ell(n)$ necessarily exist? No!

Graft a squaring automaton onto rule 106.

The result is an 18-color rule with d = 4.

- $\liminf \log_n \ell(n) = 1/2$
- $\limsup \log_n \ell(n) = 1$

