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0 What is a cellular automaton?
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One-dimensional cellular automata

@ alphabet ¥ of size k (for example {0,1,... , k —1})
@ function i : Z — X (the initial condition)
@ function f : ¥¢ — ¥ (the update rule)
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Wolfram: Look at all kX k-color rules depending on d cells.
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e Growth rates
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Row lengths

¢(n) = width of region on row n that differs from the background

P vy

For example, ¢(n) = 2n+ 1.

yrr;y’

Upper bound: ¢(n) < (d —1)n+c.

For many automata, ¢(n) grows linearly.
In particular, if £(n+ 1) — ¢(n) is eventually periodic.
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Automated—manual search

For k =2 and d < 3, the only growth rates are 0,1,3/2, 2.
What happens for larger d?

There are 22* = 65536 2-color rules depending on d = 4 cells.

@ Consider each rule begun from -- - [TT W T17---
and --- NN NN - .

@ Filter out automata with sequences ¢(n+ 1) — ¢(n)
that seem to be eventually periodic.

@ Examine the remaining automata manually for reducibility.

@ For the remaining automata, fit curves to ¢(n).
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Existence of growth rate

Growth is linear:
cin < {4(n) < con
(n)

But lim ——~ does not exist.
n—oo N

@ liminfé(n)/n=6/5
@ limsup{(n)/n=3/2
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th the same boundary structure
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e Growth exponents
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Square-root growth
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Some automata grow like v/n:
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@ Rule 106 depending on 3 cells.
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@ Rule 39780 depending on 4 cells.
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Chaotic boundaries
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Data we can store for ¢(n):

@ exact growth rate and period length (for reducible linear growth)
@ approximate growth rate (for irreducible linear growth)

@ morphism (for fractal boundaries)

@ approximate growth exponent

What do we do with this cellular automaton data?

Make it programmatically accessible in a Mathematica package.
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Existence of growth exponent

Does nIi_}m log,, £(n) necessarily exist? No!

Graft a squaring automaton onto rule 106.

The result is an 18-color rule with d = 4.
@ liminflog,¢(n) =1/2
@ limsuplog,¢(n) =1
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