Generating Primes

Eric Rowland

Mathematics Department Tulane University, New Orleans, USA

 \downarrow

School of Computer Science University of Waterloo, Waterloo, Canada

July 8, 2011

Main theme: Translation

Outline

Identifying and generating primes — a selective history

2 Interlude

A prime-generating recurrence

The sequence of primes

$$2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, \dots$$

Two questions:

- Is it easy to tell when a number is prime?
- Is it easy to generate primes?

(Not obviously.)

Primality testing

How to determine whether *n* is prime?

Trial division: Test divisibility by all numbers $2 \le m \le \sqrt{n}$.

Wilson's Theorem (Lagrange, 1773)

If $p \ge 2$, then p is prime if and only if p divides (p-1)! + 1.

Can the primality of a number be determined quickly?

In 2002, Agrawal, Kayal, & Saxena proved that "PRIMES is in P"!

If n has l digits, their algorithm determines whether n is prime in at most $c \cdot l^{12}$ steps.

Mersenne primes

A Mersenne prime is a prime of the form $2^k - 1$. First few Mersenne primes:

$$3 = 2^2 - 1, 7 = 2^3 - 1, 31 = 2^5 - 1, 127 = 2^7 - 1.$$

Marin Mersenne (1588-1648)

If $2^k - 1$ is prime, then k must also be prime:

$$2^{ab}-1=(2^a-1)\cdot\left(1+2^a+2^{2a}+2^{3a}+\cdots+2^{(b-1)a}\right).$$

So each Mersenne prime is of the form $2^p - 1$.

GIMPS

Testing primality of $2^p - 1$ is (relatively) easy: Lucas-Lehmer test.

The Great Internet Mersenne Prime Search is distributed computing project begun in 1996.

http://mersenne.org

All 47 known Mersenne primes:

$$2^{2}-1, 2^{3}-1, 2^{5}-1, 2^{7}-1, 2^{13}-1, 2^{17}-1, 2^{19}-1, 2^{31}-1, 2^{61}-1, 2^{89}-1, 2^{107}-1, 2^{127}-1, 2^{521}-1, \\ 2^{607}-1, 2^{1279}-1, 2^{2203}-1, 2^{2281}-1, 2^{3217}-1, 2^{4253}-1, 2^{4423}-1, 2^{9689}-1, 2^{9941}-1, 2^{11213}-1, 2^{19937}-1, \\ 2^{21701}-1, 2^{23209}-1, 2^{44497}-1, 2^{86243}-1, 2^{110503}-1, 2^{132049}-1, 2^{216091}-1, 2^{756839}-1, 2^{859433}-1, \\ 2^{1257787}-1, 2^{1398269}-1, 2^{2976221}-1, 2^{3021377}-1, 2^{6972593}-1, 2^{13466917}-1, 2^{20996011}-1, 2^{24036583}-1, \\ 2^{25964951}-1, 2^{30402457}-1, 2^{32582657}-1, 2^{37156667}-1, 2^{42643801}-1, 2^{43112609}-1$$

Largest known prime: $2^{43112609}-1$. It was discovered in August 2008 and has 12978189 decimal digits.

Sieve of Eratosthenes

Naive way to generate the sequence of primes:

X 2 3 A 5 B 7 B 9 X B 11 X 2 13 X 4 X 5 X B 17 X B 19 20 21 22 23 24 25 ···

Euler's polynomial

Several functions are known to generate primes.

In 1772, Euler observed that the polynomial $n^2 + n + 41$ is prime for $0 \le n \le 39$:

But for n = 40 the value is $1681 = 41^2$.

Does there exist a polynomial f(n) that only takes on prime values?

The constant polynomial f(n) = 41 does!

Prime-generating polynomials

What about a non-constant polynomial?

No. Suppose
$$f(n)$$
 is prime for all n ; let $p = f(1)$.
Then $f(1 + pk) = f(1) + p \cdot \text{stuff}$, so p divides $f(1 + pk)$.

What about a multivariate polynomial?

Theorem (Jones-Sato-Wada-Wiens, 1976)

The set of positive values taken by the following degree-25 polynomial in 26 variables is equal to the set of prime numbers.

$$(k+2)(1-(wz+h+j-q)^{2} - ((gk+2g+k+1)(h+j)+h-z)^{2} - ((gk+2g+k+1)(h+j)+h-z)^{2} - (2n+p+q+z-e)^{2} - (16(k+1)^{3}(k+2)(n+1)^{2}+1-f^{2})^{2} - (e^{3}(e+2)(a+1)^{2}+1-o^{2})^{2} - ((a^{2}-1)y^{2}+1-x^{2})^{2} - ((16r^{2}y^{4}(a^{2}-1)+1-u^{2})^{2} - (((a+u^{2}(u^{2}-a))^{2}-1)(n+4dy)^{2}+1-(x+cu)^{2})^{2} - (((a+y^{2}(u^{2}-a))^{2}-1)(n+4dy)^{2}+1-(x+cu)^{2})^{2} - (ai+k+1-l-i)^{2} - (ai+k+1-l-i)^{2} - (p+l(a-n-1)+b(2an+2a-n^{2}-2n-2)-m)^{2} - (q+y(a-p-1)+s(2ap+2a-p^{2}-2p-2)-x)^{2} - (z+pl(a-p)+t(2ap-p^{2}-1)-pm)^{2})$$

Corollary: If p is prime, then there is a proof that p is prime consisting of 87 additions and multiplications.

Prime-generating polynomials

This polynomial is an implementation of a primality test in the language of polynomials.

The first result of this kind was a degree-37 polynomial in 24 variables constructed by Yuri Matiyasevich in 1971.

Motivation was Hilbert's 10th problem:

Is there an algorithm to determine whether a polynomial equation has integer solutions?

Answer:

No. Any set of positive integers output by a computer program (running forever) can be encoded as the set of positive values of a polynomial.

A prime-generating double exponential

In 1947, William Mills proved the existence of a real number b such that $\lfloor b^{3^n} \rfloor$ is prime for $n \ge 1$.

Assuming the Riemann hypothesis, the smallest such b is

 $b = 1.3063778838630806904686144926026057 \cdots$

and generates the primes

 $2, 11, 1361, 2521008887, 16022236204009818131831320183, \ldots$

But the only known way of computing digits of *b* is by working backward from known large primes!

In 1964, C. P. Willans produced this formula for the *n*th prime:

$$p_n = 1 + \sum_{i=1}^{2^n} \left[\left(\frac{n}{\sum_{j=1}^i \left[\left(\cos \frac{(j-1)!+1}{j} \pi \right)^2 \right]} \right)^{1/n} \right]$$

But Willans' formula is built on Wilson's theorem!

$$\frac{(j-1)!+1}{j} = \begin{cases} \text{an integer} & \text{if } j=1 \text{ or } j \text{ is prime} \\ \text{not an integer} & \text{if } j \geq 2 \text{ is not prime.} \end{cases}$$

$$\left\lfloor \left(\cos\frac{(j-1)!+1}{j}\pi\right)^2 \right\rfloor = \begin{cases} 1 & \text{if } j=1 \text{ or } j \text{ is prime} \\ 0 & \text{if } j \geq 2 \text{ is not prime.} \end{cases}$$

$$\sum_{j=1}^{i} \left\lfloor \left(\cos\frac{(j-1)!+1}{j}\pi\right)^2 \right\rfloor = \pi(i)+1.$$

$$\left\lfloor \left(\frac{n}{\pi(i)+1}\right)^{1/n} \right\rfloor = \begin{cases} 1 & \text{if } i < p_n \\ 0 & \text{if } i > p_n. \end{cases}$$

The cold, hard truth

In practice, none of those "generators" actually generate primes at all!

They are just engineered.

Are there "naturally occurring" functions that generate primes?

Outline

Identifying and generating primes — a selective history

2 Interlude

A prime-generating recurrence

A New Kind of Science

In 2002 Stephen Wolfram published A New Kind of Science.

Simple programs are capable of complex behavior.

In particular, mathematics only considers a small subset of the possible programs that exist.

Cellular automata

Certain cellular automata had been studied before. For example, John Conway's "game of life".

Wolfram's approach: Systematically look at all possible rules.

A prime-generating cellular automaton

A 16-color rule depending on 3 cells that computes the primes:

Outline

Identifying and generating primes — a selective history

Interlude

A prime-generating recurrence

Recurrences

At the 2003 NKS Summer School, Matthew Frank decided to explore a different kind of system that evolves through time: integer recurrences.

Fibonacci recurrence:

$$a(n) = a(n-1) + a(n-2).$$

Hofstadter recurrence:

$$a(n) = a(n - a(n - 1)) + a(n - a(n - 2)).$$

A new recurrence

Frank systematically substituted several *Mathematica* functions into a template recurrence and looked at the pictures they generated.

One that caught his eye was this:

The recurrence was

$$a(n) = a(n-1) + \gcd(n, a(n-1))$$

with initial condition a(1) = 7.

First few terms

a(1) = 7

$$a(n) = a(n-1) + \gcd(n, a(n-1))$$

```
a(2) = 7 + \gcd(2, 7) = 7 + 1 = 8

a(3) = 8 + \gcd(3, 8) = 8 + 1 = 9

a(4) = 9 + \gcd(4, 9) = 9 + 1 = 10

a(5) = 10 + \gcd(5, 10) = 10 + 5 = 15

a(6) = 15 + \gcd(6, 15) = 15 + 3 = 18

a(7) = 18 + \gcd(7, 18) = 18 + 1 = 19

a(8) = 19 + \gcd(8, 19) = 19 + 1 = 20

a(9) = 20 + \gcd(9, 20) = 20 + 1 = 21

a(10) = 21 + \gcd(10, 21) = 21 + 1 = 22

a(11) = 22 + \gcd(11, 22) = 22 + 11 = 33

a(12) = 33 + \gcd(12, 33) = 33 + 3 = 36

a(13) = 36 + \gcd(13, 36) = 36 + 1 = 37

a(14) = 37 + \gcd(14, 37) = 37 + 1 = 38
```

Difference sequence $a(n) - a(n-1) = \gcd(n, a(n-1))$:

The sequence gcd(n, a(n-1))

gcd(n, a(n-1)) appears to always be 1 or prime!

Key observations

A few years later I generated this plot:

logarithmic plot of n_j , the jth value of n for which $gcd(n, a(n-1)) \neq 1$

Ratio between clusters is very nearly 2.

Each cluster is initiated by a large prime p.

Another key observation

n	gcd(n, a(n-1))	a(n)	n	gcd(n, a(n-1))	a(n)	n	gcd(n, a(n-1))	a(n)
1		7	21	1	45	41	1	89
2	1	8	22	1	46	42	1	90
3	1	9	23	23	69	43	1	91
4	1	10	24	3	72	44	1	92
5	5	15	25	1	73	45	1	93
6	3	18	26	1	74	46	1	94
7	1	19	27	1	75	47	47	141
8	1	20	28	1	76	48	3	144
9	1	21	29	1	77	49	1	145
10	1	22	30	1	78	50	5	150
11	11	33	31	1	79	51	3	153
12	3	36	32	1	80	52	1	154
13	1	37	33	1	81	53	1	155
14	1	38	34	1	82	54	1	156
15	1	39	35	1	83	55	1	157
16	1	40	36	1	84	56	1	158
17	1	41	37	1	85	57	1	159
18	1	42	38	1	86	58	1	160
19	1	43	39	1	87	59	1	161
20	1	44	40	1	88	60	1	162

a(n) = 3n whenever $gcd(n, a(n-1)) \neq 1$.

Local structure

Lemma

Let $n_1 \ge 2$. Let $a(n_1) = 3n_1$, and for $n > n_1$ let

$$a(n) = a(n-1) + \gcd(n, a(n-1)).$$

Let n_2 be the smallest integer greater than n_1 such that $gcd(n_2, a(n_2 - 1)) \neq 1$. Then

- $gcd(n_2, a(n_2 1)) = p$ is prime,
- p is the smallest prime divisor of $2n_1 1$,
- $n_2 = n_1 + \frac{p-1}{2}$, and
- $a(n_2) = 3n_2$.

This lemma provides the inductive step.

Main result

Theorem (2008)

Let a(1) = 7, and for n > 1 let

$$a(n) = a(n-1) + \gcd(n, a(n-1)).$$

For each $n \ge 2$, gcd(n, a(n-1)) is either 1 or prime.

Is the recurrence a "magical" producer of primes?

No.

Without the shortcut, $\frac{p-3}{2}$ consecutive 1s precede p.

With the shortcut, each step requires finding the smallest prime divisor of 2n-1.

Other initial conditions

Do all initial conditions produce only 1s and primes? No.

$$a(1) = 532$$
 produces $gcd(18, a(17)) = gcd(18, 567) = 9$.

$$a(1) = 801$$
 produces $gcd(21, a(20)) = gcd(21, 840) = 21$.

Conjecture

Let $n_1 \ge 1$ and $a(n_1) \ge 1$. For $n > n_1$ let

$$a(n) = a(n-1) + \gcd(n, a(n-1)).$$

Then there exists an N such that for each $n > N \gcd(n, a(n-1))$ is either 1 or prime.

It would suffice to show that a(n)/n always reaches 1, 2, or 3.

Nontrivial values of gcd(n, a(n-1))

5, 3, 11, 3, 23, 3, 47, 3, 5, 3, 101, 3, 7, 11, 3, 13, 233, 3, 467, 3, 5, 3, 941, 3, 7, 1889, 3, 3779, 3, 7559, 3, 13, 15131, 3, 53, 3, 7, 30323, 3, 60647, 3, 5, 3, 101, 3, 121403, 3, 242807, 3, 5, 3, 19, 7, 5, 3, 47, 3, 37, 5, 3, 17, 3, 199, 53, 3, 29, 3, 486041, 3, 7, 421, 23, 3, 972533, 3, 577, 7, 1945649, 3, 163, 7, 3891467, 3, 5, 3, 127, 443, 3, 31, 7783541, 3, 7, 15567089, 3, 19, 29, 3, 5323, 7, 5, 3, 31139561, 3, 41, 3, 5, 3, 62279171, 3, 7, 83, 3, 19, 29, 3, 1103, 3, 5, 3, 13, 7, 124559609, 3, 107, 3, 911, 3, 249120239, 3, 11, 3, 7, 61, 37, 179, 3, 31, 19051, 7, 3793, 23, 3, 5, 3, 6257, 3, 43, 11, 3, 13, 5, 3, 739, 37, 5, 3, 498270791, 3, 19, 11, 3, 41, 3, 5, 3, 996541661, 3, 7, 37, 5, 3, 67, 1993083437, 3, 5, 3, 83, 3, 5, 3, 73, 157, 7, 5, 3, 13, 3986167223, 3, 7, 73, 5, 3, 73, 77, 11, 3, 13, 17, 3, 19, 29, 3, 13, 23, 3, 5, 3, 11, 3, 7972334723, 3, 7, 463, 5, 3, 31, 7, 3797, 3, 5, 3, 15944673761, 3, 11, 3, 5, 3, 17, 3, 53, 3, 139, 607, 17, 3, 5, 3, 11, 3, 7, 113, 3, 11, 3, 5, 3, 293, 3, 5, 3, 53, 3, 5, 3, 151, 11, 3, 31889349053, 3, 63778698107, 3, 5, 3, 491, 3, 1063, 5, 3, 11, 3, 7, 13, 29, 3, 6899, 3, 13, 127557404753, 3, 41, 3, 373, 19, 11, 3, 43, 17, 3, 320839, 255115130849, 3, 510230261699, 3, 72047, 3, 53, 3, 17, 3, 67, 5, 3, 79, 157, 5, 3, 110069, 3, 7, 1020460705907, 3, 5, 3, 43, 179, 3, 557, 3, 167,

Which primes appear?

p = 2 cannot occur.

But one suspects that all other primes do.

After ten thousand nontrivial gcds, the smallest odd prime that has not yet appeared is 587.

Theorem (Chamizo-Raboso-Ruiz-Cabello, 2011)

If $a(n) = a(n-1) + \gcd(n, a(n-1))$ with a(1) = 7, then the difference sequence $\gcd(n, a(n-1))$ contains infinitely many distinct primes.

Moreover, they obtained a simple characterization of the finite sequences of primes that appear for some initial condition. For example, the sequence 17, 5, p does not occur for any prime p>3.

It also follows that no sequence of primes occurs twice consecutively.

A variant

Benoit Cloitre looked at the recurrence

$$a(n) = a(n-1) + lcm(n, a(n-1))$$

with a(1) = 1.

He observed that $\frac{a(n)}{a(n-1)} - 1$ seems to be 1 or prime for each $n \ge 2$: 2, 1, 2, 5, 1, 1, 1, 1, 5, 11, 1, 13, 1, 5, 1, 17, 1, 19, 1, 1, 11, 23, 1, 5, 13, 1, 1, 29, 1, 31, 1, 11, 17, 1, 1, 37, 1, 13, 1, 41, 1, 43, 1, 1, 23, 47, 1, 1, 17, 13, 53, 1, 1, 1, 1, 29, 59, 1, 61, 1, 1, 1, 13, 1, 67, 1, 23, 1, 71, 1, 73, 1, 1, 1, 1, 13, 79, 1, 1, 41, 83, 1, 1, 43, 29, 1, 89, 1, 13, 23, 1, 47, 1, 1, 97, 1, 1, 1, 101, 1, 103, 1, 1, 53, 107, 1, 109, 1, 1, 1, 113, 1, 23, 29, 1, 59, 1, 1, 1, 61, 41, 1, 1, 1, 127, 1, 43, 1, 131, 1, 1, 67, 1, 137, 1, 139, 1, 47, 71, 1, 129, 73, 1, 1, 149, 1, 151, 1, 1, 1, 1, 1, 1, 157, 1, 53, 1, 1, 1, 163, 1, 1, 83, ...

Conjecturally, every prime appears except 3 and 7.

No proof yet!