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Overview

Two topics:
a prime-generating recurrence
enumeration of binary trees avoiding a given pattern

Theme is speeding up computation of terms in an integer sequence.

Benefits:
faster algorithm for computing terms in practice
new information about the structure of the system

In each problem, computing a sequence quickly is related to
understanding the structure of some object.
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Prime-generating functions

Several functions are known to generate primes.

Gandhi’s formula for the nth prime:
pn =

⌊
1− log2

(
−1

2 +
∑

d |
∏n−1

k=1 pk

µ(d)
2d−1

)⌋
Mills’ formula:

⌊
θ3n⌋

, where θ = 1.3064 . . .
multivariate polynomials of Matijasevič and Jones et al., for which
the set of positive values assumed by the polynomial is equal to
the set of primes

But all known examples are engineered.
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Naturally occurring functions

Are there “naturally occurring” functions that generate primes?

Euler’s polynomial n2 + n + 41 is prime for 0 ≤ n ≤ 39.
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The recurrence

Are there naturally occurring functions that reliably generate primes?

In 2003 Matthew Frank discovered the recurrence

a(n) = a(n − 1) + gcd(n,a(n − 1)).

Consider the initial condition a(1) = 7.
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First few terms

n gcd(n, a(n − 1)) a(n)
1 7
2 1 8
3 1 9
4 1 10
5 5 15
6 3 18
7 1 19
8 1 20
9 1 21

10 1 22
11 11 33
12 3 36
13 1 37
14 1 38
15 1 39
16 1 40
17 1 41
18 1 42
19 1 43
20 1 44

n gcd(n, a(n − 1)) a(n)
21 1 45
22 1 46
23 23 69
24 3 72
25 1 73
26 1 74
27 1 75
28 1 76
29 1 77
30 1 78
31 1 79
32 1 80
33 1 81
34 1 82
35 1 83
36 1 84
37 1 85
38 1 86
39 1 87
40 1 88

n gcd(n, a(n − 1)) a(n)
41 1 89
42 1 90
43 1 91
44 1 92
45 1 93
46 1 94
47 47 141
48 3 144
49 1 145
50 5 150
51 3 153
52 1 154
53 1 155
54 1 156
55 1 157
56 1 158
57 1 159
58 1 160
59 1 161
60 1 162

gcd(n,a(n − 1)) appears to always be 1 or prime.
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The sequence gcd(n, a(n − 1))

1, 1, 1, 5, 3, 1, 1, 1, 1, 11, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 47, 3, 1, 5, 3,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 101,

3, 1, 1, 7, 1, 1, 1, 1, 11, 3, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 233, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 467, 3, 1, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . .

Eric Rowland (Rutgers University) PhD thesis defense April 2, 2009 9 / 35



Nontrivial values of gcd(n, a(n − 1))

5, 3, 11, 3, 23, 3, 47, 3, 5, 3, 101, 3, 7, 11, 3, 13, 233, 3, 467, 3, 5, 3, 941, 3, 7, 1889, 3, 3779, 3, 7559, 3, 13, 15131, 3, 53, 3, 7,

30323, 3, 60647, 3, 5, 3, 101, 3, 121403, 3, 242807, 3, 5, 3, 19, 7, 5, 3, 47, 3, 37, 5, 3, 17, 3, 199, 53, 3, 29, 3, 486041, 3, 7, 421,

23, 3, 972533, 3, 577, 7, 1945649, 3, 163, 7, 3891467, 3, 5, 3, 127, 443, 3, 31, 7783541, 3, 7, 15567089, 3, 19, 29, 3, 5323, 7, 5,

3, 31139561, 3, 41, 3, 5, 3, 62279171, 3, 7, 83, 3, 19, 29, 3, 1103, 3, 5, 3, 13, 7, 124559609, 3, 107, 3, 911, 3, 249120239, 3, 11,

3, 7, 61, 37, 179, 3, 31, 19051, 7, 3793, 23, 3, 5, 3, 6257, 3, 43, 11, 3, 13, 5, 3, 739, 37, 5, 3, 498270791, 3, 19, 11, 3, 41, 3, 5, 3,

996541661, 3, 7, 37, 5, 3, 67, 1993083437, 3, 5, 3, 83, 3, 5, 3, 73, 157, 7, 5, 3, 13, 3986167223, 3, 7, 73, 5, 3, 7, 37, 7, 11, 3, 13,

17, 3, 19, 29, 3, 13, 23, 3, 5, 3, 11, 3, 7972334723, 3, 7, 463, 5, 3, 31, 7, 3797, 3, 5, 3, 15944673761, 3, 11, 3, 5, 3, 17, 3, 53, 3,

139, 607, 17, 3, 5, 3, 11, 3, 7, 113, 3, 11, 3, 5, 3, 293, 3, 5, 3, 53, 3, 5, 3, 151, 11, 3, 31889349053, 3, 63778698107, 3, 5, 3, 491,

3, 1063, 5, 3, 11, 3, 7, 13, 29, 3, 6899, 3, 13, 127557404753, 3, 41, 3, 373, 19, 11, 3, 43, 17, 3, 320839, 255115130849, 3,

510230261699, 3, 72047, 3, 53, 3, 17, 3, 67, 5, 3, 79, 157, 5, 3, 110069, 3, 7, 1020460705907, 3, 5, 3, 43, 179, 3, 557, 3, 167, . . .
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Key observations

20 40 60 80
j

100

104

106

n j

logarithmic plot of nj ,
the j th value of n for which
gcd(n,a(n − 1)) 6= 1

Ratio between clusters is very nearly 2.

Each cluster is initiated by a large prime p.
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Another key observation

n gcd(n, a(n − 1)) a(n)
1 7
2 1 8
3 1 9
4 1 10
5 5 15
6 3 18
7 1 19
8 1 20
9 1 21

10 1 22
11 11 33
12 3 36
13 1 37
14 1 38
15 1 39
16 1 40
17 1 41
18 1 42
19 1 43
20 1 44

n gcd(n, a(n − 1)) a(n)
21 1 45
22 1 46
23 23 69
24 3 72
25 1 73
26 1 74
27 1 75
28 1 76
29 1 77
30 1 78
31 1 79
32 1 80
33 1 81
34 1 82
35 1 83
36 1 84
37 1 85
38 1 86
39 1 87
40 1 88

n gcd(n, a(n − 1)) a(n)
41 1 89
42 1 90
43 1 91
44 1 92
45 1 93
46 1 94
47 47 141
48 3 144
49 1 145
50 5 150
51 3 153
52 1 154
53 1 155
54 1 156
55 1 157
56 1 158
57 1 159
58 1 160
59 1 161
60 1 162

a(n) = 3n whenever gcd(n,a(n − 1)) 6= 1.
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Local structure

Lemma
Let n1 ≥ 2. Let a(n1) = 3n1, and for n > n1 let

a(n) = a(n − 1) + gcd(n,a(n − 1)).

Let n2 be the smallest integer greater than n1 such that
gcd(n2,a(n2 − 1)) 6= 1.Then

gcd(n2,a(n2 − 1)) = p is prime,
p is the smallest prime divisor of 2n1 − 1,
n2 = n1 + p−1

2 , and
a(n2) = 3n2.

This lemma provides the inductive step.
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Main result

Theorem
Let a(1) = 7, and for n > 1 let

a(n) = a(n − 1) + gcd(n,a(n − 1)).

For each n ≥ 2, gcd(n,a(n − 1)) is either 1 or prime.

Is the recurrence a “magical” producer of primes?

No.
Without the shortcut, p−3

2 consecutive 1s precede p.
With the shortcut, each step requires finding the smallest prime divisor
of 2n − 1.
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Other initial conditions

Do all initial conditions produce only 1s and primes? No.
a(1) = 532 produces gcd(18,a(17)) = gcd(18,567) = 9.
a(1) = 801 produces gcd(21,a(20)) = gcd(21,840) = 21.

Conjecture
Let n1 ≥ 1 and a(n1) ≥ 1. For n > n1 let

a(n) = a(n − 1) + gcd(n,a(n − 1)).

Then there exists an N such that for each n > N gcd(n,a(n − 1)) is
either 1 or prime.

It would suffice to show that a(n)/n always reaches 1, 2, or 3.
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Bounding a(n)/n from below

0 50 100 150 200 250 300
n

1

2

3

4
aHnL�n

Proposition
If n1 ≥ 1 and a(n1) > 2n1 + 1, then a(n)/n > 2 for all n ≥ n1.
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Bounding a(n)/n from above

Empirically, when a(n)/n is large, it tends to decrease.

Proposition
If n1 ≥ 1 and a(n1) ≥ 1, then a(n)/n ≤ da(n1)/n1e for all n ≥ n1.

Proof.
Let r = da(n1)/n1e. Inductively, assume a(n − 1)/(n − 1) ≤ r . Then

1 ≤ r ≤ rn − a(n − 1).

Since gcd(n,a(n − 1)) divides r · n − a(n − 1), we have

gcd(n,a(n − 1)) ≤ rn − a(n − 1);

therefore
a(n) = a(n − 1) + gcd(n,a(n − 1)) ≤ rn.
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Obstruction to the conjecture

It remains to show that a(n)/n cannot remain above 3 indefinitely.

But no global structure is known that might ensure this;
for a(7727) = 7 · 7727, a(n)/n = 7 reoccurs eleven times.

7750 7800 7850 7900 7950 8000
n

6.92

6.94

6.96

6.98

7.00

aHnL�n
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Transient region

Next best thing: Speed up computation of the transient region.

Let a(n− 1) = n + ∆. The recurrence can be interpreted as repeatedly
computing the minimal k ≥ 1 such that gcd(n + k ,n + ∆ + k) 6= 1.

Proposition

Let n ≥ 0, ∆ ≥ 2, and j be integers. Let k ≥ j be minimal such that
gcd(n + k ,n + ∆ + k) 6= 1. Then

k = min {modj(−n,p) : p is a prime dividing ∆ },

where modj(x ,p) ≡ x mod p such that j ≤ modj(x ,p) < j + p.

(The lemma covers the case ∆ = 2n − 1 for j = 1.)
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Avoiding trees...
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Binary trees

Binary trees with ≤ 5 leaves:
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Pattern containment

Patterns are contiguous. For example, let t = .

Small binary trees containing...

0 copies of t :

1 copy of t :

2 copies of t :

3 copies of t :
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Small patterns

What is the number a(n) of n-leaf binary trees avoiding t?

1-leaf tree patterns: t = .
a(n) = 0.

2-leaf tree patterns: t = .
a(1) = 1; a(n) = 0 for n ≥ 2.

3-leaf tree patterns: and . “Typical” tree avoiding : .
a(n) = 1.
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4-leaf tree patterns

4-leaf tree patterns: .

t = . A “typical” tree avoiding t looks like .

a(1) = 1; a(n) = 2n−2 for n ≥ 2.

t = . A “typical” tree avoiding t looks like .

a(1) = 1; a(n) = 2n−2 for n ≥ 2.

These two patterns are equivalent.
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The remaining 4-leaf pattern

t = . Some trees avoiding t :

a(n) = Mn−1 (a Motzkin number1).

1Robert Donaghey and Louis Shapiro, Motzkin numbers, Journal of Combinatorial
Theory, Series A 23 (1977) 291–301.
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Systematic enumeration

Is there a systematic way to compute a(n) for an arbitrary pattern t?

Let Avt (x) =
∑

T avoids t

xnumber of vertices in T =
∞∑

n=0

a(n)xn.

Theorem
Avt (x) is algebraic.

The proof is constructive.
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Example

Consider the tree pattern

t = = tl tr, where tl = and tr = .

For a given tree pattern p, let

weight(p) :=
∑

T matches p and avoids t

xnumber of vertices in T .

Begin with weight( ) = x + weight( ); rewrite weight( ) by

weight(pl pr
) =

x ·
(
weight(pl) · weight(pr )− weight(pl ∩ tl) · weight(pr ∩ tr )

)
.
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System of polynomial equations

weight( ) = x ·
(
weight( ) · weight( )− weight( ∩ ) · weight( ∩ )

)
= x ·

(
weight( )2 − weight( ) · weight( )

)
weight( ) = x ·

(
weight( ) · weight( )− weight( ∩ ) · weight( ∩ )

)
= x ·

(
weight( ) · weight( )− weight( ) · weight( )

)
weight( ) = x ·

(
weight( ) · weight( )− weight( ∩ ) · weight( ∩ )

)
= x ·

(
weight( ) · weight( )− weight( ) · weight( )

)
weight( ) = x ·

(
weight( ) · weight( )− weight( ∩ ) · weight( ∩ )

)
= x ·

(
weight( ) · weight( )− weight( ) · weight( )

)
No new variables. Eliminate the four auxiliary variables to obtain

x3 weight( )2 − (x2 − 1)2 weight( )− x (x2 − 1) = 0.
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5-leaf equivalence classes

A computer implementation establishes all equivalence classes for
binary trees up to 8 leaves.

For 5-leaf tree patterns...

and form an equivalence class.

and form an equivalence class.

The other 10 tree patterns are equivalent:
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6-leaf equivalence classes

Isolated trees:

, ,
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Bijective proofs

Given two equivalent tree patterns s and t , can we find a bijective proof
of the equivalence?

For example, and are equivalent.

Let T avoid . Idea: Replace all instances of with .
How?

a b c d
→ c

a b
d

What order? top-down.
For example:

→ → →
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Inverse

The inverse map is a bottom-up replacement with the inverse
replacement rule:

a

b c
d
→

b c a d

For example:

→ → →
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Searching for bijections

Generally, we may individually try all m! permutations of leaves.

Permutations whose replacements prove equivalence for pairs of
5-leaf trees:

t2 t3 t4 t6 t7 t8 t9 t11 t12 t13
t2 — 14235 43125
t3 — 12534 31245 51234
t4 12453 — 41235
t6 — 12534 45123
t7 12453 — 45123
t8 34512 — 31245
t9 34512 23145 —

t11 13452 — 31245
t12 23451 12453 23145 —
t13 14532 13425 —
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Conjecture

Not every pair of equivalent trees can be shown equivalent by such a
bijection. However, the following appears to hold.

Conjecture
Two binary tree patterns s and t are equivalent if and only if there is a
sequence of

top-down replacements,
bottom-up replacements, and
left–right reflections

that produces a bijection from binary trees avoiding s to binary trees
avoiding t.

The conjecture is true for tree patterns of ≤ 7 leaves.
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