Distinguished equivalence classes of words in F_2

Bobbe Cooper and Eric Rowland

Laboratoire de Combinatoire et d'Informatique Mathématique Université du Québec à Montréal

January 9, 2013

Eric Rowland (UQAM)

Equivalence classes of words in F_2

January 9, 2013 1 / 25

Whitehead's theorem

2 Minimal words and root words

Notation

•
$$L_2 = \{a, b, \overline{a}, \overline{b}\}$$
, where $\overline{a} = a^{-1}$ and $\overline{b} = b^{-1}$.

• The free group on two generators:

$$F_2 = \langle a, b \rangle = \{ w_1 \cdots w_\ell \in L_2^* : w_i \neq w_{i+1}^{-1} \text{ for } 1 \le i \le \ell - 1 \}$$

$$= \{ \epsilon, a, b, \overline{a}, \overline{b}, aa, ab, a\overline{b}, ba, bb, b\overline{a}, \overline{ab}, \overline{aa}, \overline{ab}, \overline{ba}, \overline{ba}, \overline{bb}, \dots \}$$

Definition

A word $w \in F_2$ is minimal if $|w| \le |\phi(w)|$ for all $\phi \in Aut F_2$.

Example

Let $\pi(a) = b, \pi(b) = \overline{a}$. π extends to an automorphism of F_2 : $\pi^{-1}(a) = \overline{b}$ and $\pi^{-1}(b) = a$.

A permutation is an automorphism that permutes L_2 .

Eric Rowland (UQAM)

Equivalence classes of words in F_2

Definition

A one-letter automorphism of F_2 is an automorphism which maps $x \mapsto x$ and $y \mapsto yx$ for some $x, y \in L_2$ with $y \notin \{x, \overline{x}\}$.

Example

Let $\phi(a) = a, \phi(b) = ba$. Then $\phi^{-1}(a) = a, \phi^{-1}(b) = b\overline{a}$. We have $\phi(a\overline{b}) = a\overline{a}\overline{b} = \overline{b}$, so $a\overline{b}$ is not minimal. We write $w \sim v$ if $\phi(w) = v$ for some automorphism ϕ .

Theorem (Whitehead, 1936)

If $w, v \in F_2$ such that $w \sim v$ and v is minimal, then there exists a sequence $\phi_1, \phi_2, \ldots, \phi_m$ of one-letter automorphisms such that

- φ_m····φ₂φ₁(w) and v differ only by a permutation and an inner automorphism and
- for $0 \le k \le m-1$, $|\phi_{k+1}\phi_k \cdots \phi_2\phi_1(w)| < |\phi_k \cdots \phi_2\phi_1(w)|$.

The set of one-letter automorphisms is finite.

Corollary

There is an algorithm for determining whether $w \in F_2$ is minimal. There is an algorithm for determining whether $w, v \in F_2$ are equivalent.

- Myasnikov and Shpilrain (2003): The number of minimal words equivalent to minimal w ∈ F₂ is bounded by a polynomial in |w|.
- Lee (2006): The same is true for minimal *w* ∈ *F_n* under a local condition on *w*.

These results imply upper bounds on the time required to determine whether $w, v \in F_n$ are equivalent.

Corollary

There is an algorithm, given n, for computing representatives of all equivalence classes of F_2 that contain some word of length $\leq n$.

We computed all classes containing a word of length \leq 20.

Represent a class W by its lexicographically least minimal word.

Example

$$\begin{split} W &= \{ aa, bb, \overline{aa}, \overline{bb}, abab, abb\overline{a}, a\overline{b}a\overline{b}, \overline{a}\overline{b}\overline{a}\overline{b}, a\overline{b}\overline{b}\overline{a}, b\overline{a}\overline{b}\overline{a}, b\overline{a}\overline{b}\overline{a}, b\overline{a}\overline{a}\overline{b}, \overline{a}\overline{b}\overline{a}\overline{b}, \overline{a}\overline{b}\overline{a}\overline{b}, \overline{a}\overline{b}\overline{a}\overline{b}, \overline{a}\overline{b}\overline{a}\overline{b}, \overline{b}\overline{a}\overline{b}\overline{a}, \overline{b}\overline{a}\overline{b}\overline{a}, abaab, \dots \}. \\ \hline \text{The minimal words in } W \text{ are } \{ aa, bb, \overline{aa}, \overline{bb} \}, \text{ and the lex least is } aa. \end{split}$$

Equivalence classes

0.1	ϵ
1.1	а
2.1	aa
3.1	aaa
4.1	aaaa
4.2	abāb
4.3	aabb
5.1	aaaaa
5.2	aabab
5.3	aabāb
5.4	aaabb

6.1	aaaaaa
6.2	aaabab
6.3	aaabbb
6.4	aaabāb
6.5	aabaab
6.6	aababb
6.7	aabbab
6.8	aabbāb
6.9	aab aa b
6.10	aaaabb
7.1	aaaaaaa
7.2	aaaabab
7.3	aaaabbb

7.4	aaaab a b
7.5	aaabaab
7.6	aaababb
7.7	aaabbab
7.8	aaabbāb
7.9	aaabb a b
7.10	aaabābb
7.11	aaab aa b
7.12	aaab a bb
7.13	aabaabb
7.14	aabbabb
7.15	aabb aa b
7.16	aaaaabb

Whitehead's theorem

Definition

Let $(v)_w$ denote the number of (possibly overlapping) occurrences of v and v^{-1} in the cyclic word w.

Example

Let $w = aa\overline{bb}\overline{a}ba\overline{b}a$. The length-2 subword counts are $(aa)_w = 2$, $(bb)_w = 1$, $(ab)_w = 1 = (ba)_w$, and $(a\overline{b})_w = 2 = (\overline{b}a)_w$.

Theorem

w is minimal if and only if $|(ab)_w - (a\overline{b})_w| \le \min((aa)_w, (bb)_w)$.

It is easy to recognize equivalence under

- a permutation (*abab* $\sim \overline{a}b\overline{a}b \sim baba \sim \cdots$).
- an inner automorphism (*abab* \sim *baba*).

Equivalence classes

0.1	ϵ
1.1	а
2.1	aa
3.1	aaa
4.1	aaaa
4.2	abāb
4.3	aabb
	abab
5.1	aaaaa
5.2	aabab
5.3	aab a b
5.4	aaabb
	aabāb

6.1	aaaaaa
6.2	aaabab
6.3	aaabbb
6.4	aaabab
6.5	aabaab
6.6	aababb
6.7	aabbab
6.8	aabbāb
6.9	aab aa b
6.10	aaaabb
	aaab a b
	aabaab
7.1	aaaaaaa
7.2	aaaabab
7.3	aaaabbb
7.1 7.2 7.3	aabaab aaaaaaa aaaabab aaaabbb

7.4	aaaab a b
7.5	aaabaab
7.6	aaababb
7.7	aaabbab
7.8	aaabbāb
7.9	aaabb a b
7.10	aaabābb
7.11	aaab aa b
7.12	aaabābb
7.13	aabaabb
7.14	aabba bb
7.15	aabb aa b
7.16	aaaaabb
	aaaab a b
	aaab aa b

Equivalence classes

0.1	ϵ
1.1	а
2.1	aa
3.1	aaa
4.1	aaaa
4.2	abāb
4.3	aabb
	abab
5.1	aaaaa
5.2	aabab
5.3	aab a b
5.4	aaabb
	aabāb

6.1	aaaaaa
6.2	aaabab
6.3	aaabbb
6.4	aaabab
6.5	aabaab
6.6	aababb
6.7	aabbab
6.8	aabbāb
6.9	aab aa b
6.10	aaaabb
	aaab a b
	aabaab
7.1	aaaaaaa
7.2	aaaabab
7.3	aaaabbb

7.4	aaaab a b
7.5	aaabaab
7.6	aaababb
7.7	aaabbab
7.8	aaabbāb
7.9	aaabb a b
7.10	aaabābb
7.11	aaab aa b
7.12	aaabābb
7.13	aabaabb
7.14	aabba bb
7.15	aabb aa b
7.16	aaaaabb
	aaaab a b
	aaab aa b

Definition

A child of $w \neq \epsilon$ is a word obtained by duplicating a letter in *w*. Also define the words $a, \overline{a}, b, \overline{b}$ to be children of ϵ .

Example

The children of *aabb* are *aaabb* and *aabbb*.

A child of a minimal word w is necessarily minimal, since

$$|(ab)_w - (a\overline{b})_w| \leq \min((aa)_w, (bb)_w).$$

Definition

A root word is a minimal word that is not a child of any minimal word.

Root words are new minimal words with respect to duplicating a letter.

Example

The minimal word *aabb* is a root word, since neither of its parents *abb* and *aab* is minimal.

Root words refine the notion of minimal words.

Theorem

w is a root word if and only if
$$|(ab)_w - (a\overline{b})_w| = (aa)_w = (bb)_w$$
.

Proof.

Recall: *w* is minimal if and only if $|(ab)_w - (a\overline{b})_w| \le \min((aa)_w, (bb)_w)$. A minimal word *w* is a root word if and only if replacing any *xx* by *x* in *w* produces a non-minimal word.

Theorem

If w is a root word, then |w| is divisible by 4.

The property of being a root word is preserved under automorphisms.

Theorem

If w is a root word, $w \sim v$, and |w| = |v|, then v is a root word.

A class *W* whose minimal words are root words is a root class.

Root classes

0.1	ϵ
1.1	а
2.1	aa
3.1	aaa
4.1	aaaa
4.2	abāb
4.3	aabb
	abab
5.1	aaaaa
5.2	aabab
5.3	aab a b
5.4	aaabb
	aabāb

6.1	aaaaaa
6.2	aaabab
6.3	aaabbb
6.4	aaabab
6.5	aabaab
6.6	aababb
6.7	aabbab
6.8	aabbāb
6.9	aab aa b
6.10	aaaabb
	aaab a b
	aab aa b
7.1	aaaaaaa
7.2	aaaabab
7.3	aaaabbb

7.4	aaaab a b
7.5	aaabaab
7.6	aaababb
7.7	aaabbab
7.8	aaabbāb
7.9	aaabb a b
7.10	aaabābb
7.11	aaab aa b
7.12	aaabābb
7.13	aabaabb
7.14	aabba bb
7.15	aabb aa b
7.16	aaaaabb
	aaaab a b
	aaab aa b

Whitehead's theorem

Khan (2004) gave a structural description of equivalence classes of F_2 .

A shorter classification distinguishes non-root from root classes.

Let $\Gamma(W)$ be a directed graph whose vertices are the minimal words of W up to permutations and inner automorphisms.

We draw an edge $w \to v$ for each one-letter automorphism ϕ such that $\phi(w)$ and v differ only by a permutation and an inner automorphism.

Example

Consider the equivalence class W containing *aabb* and *abab*. Applying the 4 one-letter automorphisms to *aabb*...

$a\mapsto ab$:	ababbb	$m{b}\mapstom{b}m{a}$:	aababa
$a\mapsto a\overline{b}$:	abab	$m{b}\mapstom{b}\overline{m{a}}$:	abāb

Applying the 4 one-letter automorphisms to $aba\overline{b}...$

$a\mapsto ab$:	abba	$m{b}\mapstom{b}m{a}$:	abab
$a\mapsto a\overline{b}$:	aabb	$m{b}\mapstom{b}\overline{m{a}}$:	abab

Therefore $\Gamma(W)$ is

aabb
$$\rightleftharpoons$$
 aba \overline{b} .

By Whitehead's theorem, $\Gamma(W)$ is connected.

Structure of non-root classes

Theorem

Let W be a non-root class. Then $\Gamma(W)$ has one of the following forms.

Theorem

Let W be a root class with no alternating minimal word. Then $\Gamma(W)$ is one of the following graphs.

Theorem

Let W be a root class containing an alternating minimal word w_0 . Then $\Gamma(W)$ is one of the following graphs.

Moreover, each of these forms occurs.

- Non-root classes have simple structure.
- If W is a root class, $\Gamma(W)$ is one of seven graphs.

Corollary

If W is a root class, then $\Gamma(W)$ has 1, 2, 3, or 5 vertices.

Future work:

Understand descendancy on the level of equivalence classes. Can equivalence classes be enumerated?