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Automatic sequences

A sequence (an)n≥0 is 2-automatic if there is DFAO whose output is an
when fed the base-2 digits of n.

Characteristic sequence 011010001 · · · of powers of 2:

Minimal solution to the “infinite” tower of Hanoi puzzle
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Paper-folding sequence

LLRLLRRLLLRRLRRLLLRLLRRRLLRRLRRL · · ·
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Thue–Morse sequence

Let T (n) = (number of 1s in the binary representation of n) mod 2.

The Thue–Morse sequence

t = T (n)n≥0 = 01101001100101101001011001101001 · · ·

is 2-automatic. It is also cube-free.

t = ϕ∞(0) is a fixed point of the morphism ϕ : 0→ 01,1→ 10.

A sequence is 2-automatic if and only if it is the image, under a coding,
of a fixed point of a 2-uniform morphism (Cobham 1972).
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Complexity of sequences

Given a sequence x, what is its complexity?

Different measures of complexity:

factor complexity Px(n): number of distinct factors of length n.

abelian complexity Pab
x (n): number of factors of length n up to

abelian equivalence (e.g., 001100 ≡ab 010010).

In general, Pab
x (n) ≤ Px(n).
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Factor complexity of Thue–Morse

Theorem (Brlek 1989)
For n ≥ 3, the factor complexity of the Thue–Morse sequence is

Pt(n) =

{
4n − 2 · 2m − 4 if 2 · 2m < n ≤ 3 · 2m

2n + 4 · 2m − 2 if 3 · 2m < n ≤ 4 · 2m.
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Abelian complexity of Thue–Morse

t = ϕ∞(0) = 0110100110010110 · · ·
= (01)(10)(10)(01)(10)(01)(01)(10) · · ·

The abelian complexity of Thue–Morse is simpler, since ϕ(0) ≡ab ϕ(1).

Proposition
For n ≥ 1,

Pab
t (n) =

{
3 if n is even
2 if n is odd.
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`-abelian equivalence

Definition
Two words u and v are `-abelian equivalent, denoted u ≡` v , if
|u|w = |v |w for all words w of length ≤ `.

Example
Let u = 011010011 and v = 001101101.

u ≡2 v because
|u|0 = 4 = |v |0, |u|1 = 5 = |v |1 and
|u|00 = 1 = |v |00, |u|01 = 3 = |v |01, etc.

u 6≡3 v because |u|101 = 1 6= 2 = |v |101

But 01201011 ≡3 01012011.

The `-abelian complexity P(`)
x (n) of a sequence x is the number of

factors of length n up to `-abelian equivalence.

Pab
x (n) = P(1)

x (n) ≤ P(`)
x (n) ≤ P(∞)

x (n) = Px(n).
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2-abelian complexity of Thue–Morse
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Not piecewise linear like Pt(n); not eventually periodic like Pab
t (n).

Karhumäki–Saarela–Zamboni 2013: P(2)
t (n) = O(log n).

How to explain the nested structure?
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Nested structure in automatic sequences

Definition
Let k ≥ 2. The k -kernel of a sequence x is the set of sequences

Kk ,x = {(xken+r )n≥0 | e ≥ 0, 0 ≤ r ≤ ke − 1} .

2-kernel of the Thue–Morse sequence:

t = 0110100110010110100101100110 · · ·
e = 1, r = 0 (t2n)n≥0 = 0110100110010110100101100110 · · · = t
e = 1, r = 1 (t2n+1)n≥0 = 1001011001101001011010011001 · · · = t

K2,t = {t, t}

A sequence is 2-automatic if and only if its 2-kernel is finite.
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Nested structure in integer sequences

Let ν2(n) be the exponent of the largest power of 2 dividing n.

The “ruler sequence” ν2(n + 1)n≥0 is

0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 5 · · · .
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ν2(2n + 0) = 1 + ν2(n)

ν2(2n + 1) = 0
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Counting nonzero binomial coefficients modulo 8

Let s(n) = |{0 ≤ m ≤ n :
(n

m

)
6≡ 0 mod 8}|.
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s(2n + 1) = 2s(n)

s(4n + 0) = s(2n)

s(8n + 2) = −2s(n) + 2s(2n) + s(4n + 2)

s(8n + 6) = 2s(4n + 2)
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Regular sequences

Definition (Allouche–Shallit 1992)
An integer sequence s(n)n≥0 is k -regular if the Z-module generated by
the k -kernel

{s(ken + r)n≥0 | e ≥ 0, 0 ≤ r ≤ ke − 1} .

is finitely generated.

Theorem (Mossé 1996, Charlier–Rampersad–Shallit 2012)
The factor complexity of a k-automatic sequence is k-regular.

Is the `-abelian complexity of a k -automatic sequence k -regular?

Question
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Complexity and regularity

Theorem (Madill–Rampersad 2013)
The abelian complexity of the paperfolding sequence is 2-regular.

Let ψ(0) = 01, ψ(1) = 00. The period-doubling sequence is

p = ψ∞(0) = 01000101010001000100 · · · .

Theorem (Karhumäki–Saarela–Zamboni 2013)
The abelian complexity of the period-doubling sequence is 2-regular.

For Thue–Morse t. . .
The abelian complexity is 2-regular (since it is eventually periodic).
Is the 2-abelian complexity 2-regular?
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Proving 2-regularity

Guess and prove relations among sequences in the 2-kernel.
Let x2e+r = P(2)

t (2en + r).
x5 = x3
x9 = x3
x12 = −x6 + x7 + x11
x13 = x7
x16 = x8
x17 = x3
x18 = x10
x20 = −x10 + x11 + x19
x21 = x11
x22 = −x3 − 2x6 + x7 + 3x10 + x11 − x19
x23 = −x3 − 3x6 + 2x7 + 3x10 + x11 − x19
x24 = −x3 + x7 + x10
x25 = x7
x26 = −x3 + x7 + x10
x27 = −2x3 + x7 + 3x10 − x19
x28 = −2x3 + x7 + 3x10 − x14 + x15 − x19
x29 = x15
x30 = −x3 + 3x6 − x7 − x10 − x11 + x15 + x19
x31 = −3x3 + 6x6 − 2x11 − 3x14 + 2x15 + x19
x32 = x8
x33 = x3
x34 = x10
x35 = x11
x36 = −x10 + x11 + x19
x37 = x19
x38 = −x3 + x10 + x19

x39 = −x3 + x11 + x19
x40 = −x3 + x10 + x11
x41 = x11
x42 = −x3 + x10 + x11
x43 = −2x3 + 3x10
x44 = −2x3 − x6 + x7 + 3x10
x45 = −x3 − 3x6 + 2x7 + 3x10 + x11 − x19
x46 = −2x3 − 3x6 + 2x7 + 5x10 + x11 − 2x19
x47 = −2x3 + x7 + 3x10 − x19
x48 = −x3 + x7 + x10
x49 = x7
x50 = −x3 + x7 + x10
x51 = −x3 − 3x6 + 2x7 + 3x10 + x11 − x19
x52 = −2x3 − 3x6 + 2x7 + 5x10 + x11 − 2x19
x53 = −2x3 + x7 + 3x10 − x19
x54 = −4x3 + 3x6 + x7 + 3x10 − x11 − 2x14 + x15
x55 = −4x3 + 3x6 + x7 + 3x10 − x11 − 3x14 + 2x15
x56 = −x3 + x10 + x15
x57 = x15
x58 = −x3 + x10 + x15
x59 = −2x3 + 3x6 − x7 − x11 + x15 + x19
x60 = −4x3 + 6x6 + x10 − 2x11 − 3x14 + 2x15 + x19
x61 = −3x3 + 6x6 − 2x11 − 3x14 + 2x15 + x19
x62 = −x3 + 3x6 − x7 − x10 − x11 + x15 + x19
x63 = x15

Guessed by Rigo–Vandomme, proved by Greinecker (2014).
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More general approach?
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Apparent symmetry between powers of 2:
P(2)

t (2`+1 − r) = P(2)
t (2` + r).

And there is some relation between P(2)
t (2` + r) and P(2)

t (r).
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2-abelian complexity of the period-doubling sequence

Recall p = ψ∞(0) = 0100010101000100 · · · where ψ(0) = 01,
ψ(1) = 00.
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The 2-abelian complexity of p is closely related to the
1-abelian complexity of the 2-block coding of p.
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Reduction to 1-abelian complexity

The 2-block coding of p is the fixed point of 0→ 12,1→ 12,2→ 00:

x = 120012121200120012001212120012121200 · · ·
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Nice translation and reflection relations:
P(1)

x (2` + r) = P(1)
x (r) + 3 P(1)

x (2`+1 − r) = P(1)
x (2` + r)
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From relations to regularity

Do these relations imply 2-regularity?
Not clear; our relations peel off the most significant digit, whereas
2-kernel relations should peel off the least significant digit.

Theorem
Suppose s(n)n≥0 satisfies

s(2` + r) =

{
s(r) + c if r ≤ 2`−1

s(2`+1 − r) if r > 2`−1

for all ` ≥ `0 and 0 ≤ r ≤ 2` − 1. Then s(n)n≥0 is 2-regular.

Outline of the proof:
Prove the case c = 0.
Prove general 2-kernel relations by induction on n = 2` + r .
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Proving the translation and reflection relations

The 2-block coding of p:

x = 120012121200120012001212120012121200 · · ·

1 Consider
∆0(n) = max

|u|=n
|u|0 − min

|u|=n
|u|0.

2 ∆0(n) is closely related to P(1)
x (n) since 1 and 2 alternate in x.

3 Prove the translation and reflection relations for ∆0(n).

Therefore P(1)
x (n) is 2-regular, and this implies the following.

Theorem

The 2-abelian complexity P(2)
p (n) of the period-doubling sequence is

2-regular.
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Back to Thue–Morse

The 2-block coding of Thue–Morse

y = 132120132012132120121320 · · ·

is a fixed point of 0→ 12, 1→ 13, 2→ 20, 3→ 21.

1 Consider the function ∆1,2(n).

2 ∆1,2(n) is closely related to P(1)
y (n) since 1,2 alternate and 0,3

alternate in y.
3 Prove the translation and reflection relations for ∆1,2(n).

Theorem

The 2-abelian complexity P(2)
t (n) of the Thue–Morse sequence is

2-regular.
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Other sequences

Some 2-abelian complexity sequences appear to satisfy the reflection:
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Other sequences

But not all . . .
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Other sequences

But not all . . .
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