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Automatic sequences

A sequence (an)n>0 is 2-automatic if there is DFAO whose output is aj
when fed the base-2 digits of n.

@ Characteristic sequence 011010001 - - - of powers of 2:

A
o <«—1+— @)= A
9 &5 )
o’ o’

@ Minimal solution to the “infinite” tower of Hanoi puzzle
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Paper-folding sequence
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Thue—Morse sequence

Let T(n) = (number of 1s in the binary representation of n) mod 2.

The Thue—Morse sequence
t=T(n),>0=01101001100101101001011001101001 - - -

is 2-automatic. It is also cube-free.

t = ¢°°(0) is a fixed point of the morphism ¢ : 0 — 01,1 — 10.

A sequence is 2-automatic if and only if it is the image, under a coding,
of a fixed point of a 2-uniform morphism (Cobham 1972).
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Complexity of sequences

Given a sequence x, what is its complexity?

Different measures of complexity:

@ factor complexity Px(n): number of distinct factors of length n.

@ abelian complexity 22°(n): number of factors of length n up to
abelian equivalence (e.g., 001100 =, 010010).

In general, PZ°(n) < Px(n).
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Factor complexity of Thue—Morse

Theorem (Brlek 1989)

For n > 3, the factor complexity of the Thue—Morse sequence is

() = 4n—2.2M_4 jf2.2M < pn<3.2M
YT Yongra.2m_2 jf3.om<on<4.2m
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Abelian complexity of Thue—Morse

t=>(0) = 0110100110010110- - -
= (01)(10)(10)(01)(10)(01)(01)(10) - - -

The abelian complexity of Thue—Morse is simpler, since ¢(0) = ©(1).

Proposition
Forn>1,

Pab(n) = 3 ifniseven
2 ifnis odd.
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(-abelian equivalence

Definition
Two words u and v are /-abelian equivalent, denoted u =, v, if
|ulw = |v|w for all words w of length < /.

| N\

Example
Let u =011010011 and v = 001101101.
@ U =) v because
o |ulo=4=|vlo, luls =5 = |v|; and
@ |uloo =1 = |V|oo, |t|o1 =3 = |V]o1, etc.
@ u #3 v because |u|1p1 =1 # 2 = |V]101
But 01201011 =3 01012011.

The ¢-abelian complexity P,((e)(n) of a sequence x is the number of
factors of length n up to ¢-abelian equivalence.

Pgo(n) = P (n) < P (n) < P (n) = Px(n).
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2-abelian complexity of Thue—Morse

50 100 150 200 250

Not piecewise linear like P¢(n); not eventually periodic like PE(n).
Karhuméki—Saarela—Zamboni 2013: Pt(z)(n) = O(log n).

How to explain the nested structure?
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Nested structure in automatic sequences

Definition
Let k > 2. The k-kernel of a sequence x is the set of sequences
Ick,x = {(Xken+r)nzo |le>0,0<r< k® — 1}.

2-kernel of the Thue—Morse sequence:

t=0110100110010110100101100110 - - -
e=1,r=0  (tzn)n=0 = 0110100110010110100101100110 - - -
e=1,r=1 (tani1)nso = 1001011001101001011010011001 - - -

ICZ,t = {tai}
A sequence is 2-automatic if and only if its 2-kernel is finite.
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Nested structure in integer sequences

Let v»(n) be the exponent of the largest power of 2 dividing n.

The “ruler sequence” va(n+1),0 is

01020103010201040102010301020105 - --
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V(20 +0) = 1 + va(n)
1/2(2n+ 1) =0
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Counting nonzero binomial coefficients modulo 8

Let s(n) =[{0<m<n:(])#0 mod 8}|.
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1234567851091211141416510132013182024 ---

s(2n+1) =2s(n)

s(4n+0) = s(2n)

s(8n+2) = —2s(n) +2s(2n) + s(4n+2)
s(8n+6) =2s(4n+2)
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Regular sequences

Definition (Allouche—Shallit 1992)

An integer sequence s(n),>o is k-regular if the Z-module generated by
the k-kernel

{s(k®n+r)p>0 | €>0,0<r<k®—1}.

is finitely generated.

Theorem (Mossé 1996, Charlier—Rampersad—Shallit 2012)

The factor complexity of a k-automatic sequence is k-regular.

Question

Is the ¢-abelian complexity of a k-automatic sequence k-regular?
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Complexity and regularity

Theorem (Madill-Rampersad 2013)

The abelian complexity of the paperfolding sequence is 2-regular.

Let ¢(0) = 01, ¢/(1) = 00. The period-doubling sequence is

p =¢>°(0) =01000101010001000100- - - .

Theorem (Karhumaki—Saarela—Zamboni 2013)

The abelian complexity of the period-doubling sequence is 2-regular.

For Thue—Morse t. ..

The abelian complexity is 2-regular (since it is eventually periodic).
Is the 2-abelian complexity 2-regular?
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Proving 2-regularity

Guess and prove relations among sequences in the 2-kernel.
Let Xpey, = 7?1(2)(29n +r).

X = x
xg = xg Xz9g = —X3+ Xy +Xqg
X, = —X3 + X9 + X
Xio = —Xg+ X7+ Xqy x:? - x113 10 7 1
;13 2 ;7 Xg2 = —X3+ X0+ Xqq
x16 _ xs X43 = —2X3+ 3Xqp
x:; - X?o X44 = —2X3 — Xg + X7 + 3Xqg
_ X45 =  —Xg — 3Xg +2X7 + 3Xq0 + X11 — Xqg
;i? - x1)1(10 e X6 =  —2%X3 — 3Xg + 2X7 + 5Xq0 + Xq1 — 2Xqg
_ X, = —2X3+X7 +3Xqp — X
Xpp = —X3 — 2Xg + X7 + 3Xq0 + X11 — Xqg x:; - 7X33+ ot x1010 19
Xp3 =  —Xz — 3Xg + 2X7 + 3Xqg + X1 — Xq9 Xio = X7
Xo4 = —X3 + X7 + Xq¢ X50 _ “xg + X7 + x40
X5 = X7
_ X51 = —Xg — 3Xg + 2X7 + 3Xqg9 + X1 — Xq9
X26 = X3 + X7 + Xqp Xsp = —2Xg — 3Xg + 2X7 + 5X1g + X11 — 2Xig
Xo7 = —2X3 + X7 + 3X19 — Xqg Xes _ —2%5 + X7 o 3X4g — X1g
iig - ;§XS+X7+SX10 T Xta s = Xe Xsg = —4X3+ 3Xg + X7 +3Xq0 — Xq1 — 2Xy4 + X135
B X = —4X3 + 3Xg + X7 + 3Xqg — X414 — 3Xq4 + 2X
Xzg = —X3+3Xg — X7 — X{g — Xq1 + X{5 + X{g x55 - . 3+x G_H( 7 10 = X1t 14 15
X371 = —3X3 + 6Xg — 2Xy1 — 3Xq4 + 2X45 + X1g ng - x153 10 T %15
:32 - ;8 Xsg = —X3+ X0+ X5
o -8 Xs9 = —2X3+3Xg — X7 — Xq1 + X5 + X19
x34 _ x10 Xgo = —4X3+6Xg+Xq0 — 2Xq1 — 3Xq4 + 2X15 + Xq9
x35 _ _1,1( FXiq + X Xgy =  —3%3 + 6Xg — 2Xq1 — 3Xq4 + 2X45 + Xq9
% Z 1o R e Xg2 = —X3+3Xg — X7 — X190 — X11 + X45 + X1g
- Xe3 = X5
X3g =  —X3+ X0+ Xq9

Guessed by Rigo—Vandomme, proved by Greinecker (2014).
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More general approach?

50 100 150 200 250

Apparent symmetry between powers of 2:
PE @2+ — ) = PP (2f 4 ).

And there is some relation between Pt(z)(Zf +r) and Pt(z)(r).
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2-abelian complexity of the period-doubling sequence

Recall p = ¢°°(0) = 0100010101000100- - - where (0) = 01,
»(1) = 00.

The 2-abelian complexity of p is closely related to the
1-abelian complexity of the 2-block coding of p.
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Reduction to 1-abelian complexity

The 2-block coding of p is the fixed pointof 0 — 12,1 — 12,2 — 00:
x = 120012121200120012001212120012121200 - - -

s

0 20 40 60 8 100 120 n
1 Nice tra}nslation and relations:
PR+ ) =PO(r) + 3
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From relations to regularity

Do these relations imply 2-regularity?
Not clear; our relations peel off the most significant digit, whereas
2-kernel relations should peel off the least significant digit.

Theorem
Suppose s(n),>o satisfies

s(r)+c¢ ifr <21
s —r) ifr> 21

d%+n:{

forall ¢ > ¢y and 0 < r < 2° — 1. Then s(n) > is 2-regular.

Outline of the proof:
@ Prove the case ¢ = 0.
@ Prove general 2-kernel relations by induction on n = 2¢ 4 r.
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Proving the translation and reflection relations

The 2-block coding of p:

X =120012121200120012001212120012121200 - - -

@ Consider

Bo(n) = max|ulo — min Julo,

@ Ay(n) is closely related to P,ﬁ”(n) since 1 and 2 alternate in x.
© Prove the translation and reflection relations for Aq(n).

Therefore P,E”(n) is 2-regular, and this implies the following.

The 2-abelian complexity 77(2)( n) of the period-doubling sequence is
2-regular.
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Back to Thue—Morse

The 2-block coding of Thue—Morse
y = 132120132012132120121320 - - -

is a fixed pointof 0 — 12,1 — 13,2 — 20, 3 — 21.
@ Consider the function A1 2(n).

@ A (n)is closely related to Pé,”(n) since 1,2 alternate and 0, 3
alternate iny.

© Prove the translation and reflection relations for A4 »(n).

The 2-abelian complexity Pt(z)(n) of the Thue—Morse sequence is
2-regular.
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Other sequences

Some 2-abelian complexity sequences appear to satisfy the reflection:

25
15
15 2
10 10 15
10
5 5
5
20 40 60 80 100 120 20 40 60 80 100 120 20 40 60 80 100 120
{001, 1-02,2-01} {0-01,1-12, 211} {001, 1-20,2-01}
25
25
15
20
20
15 15 10

20 40 60 80 100
{0501, 120,210}
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20 40 60 80 100 120
{001,112, 2501}
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{0501,1-512, 2521}
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Other sequences

But not all ...

200
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20 40 100
10 20 50
20 40 60 80 100 120 ! 20 40 60 8 100 120 20 40 60 80 100 120
(001,102,200} (001,102,212} {0501, 102,221}
60 250
15
50 200
0 150 10
30
100
20 5
10 50
20 40 60 8 100 120 ’ 20 40 60 80 100 120 ' 20 40 60 8 100 120

{0501, 121,200}
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Other sequences

But not all ...

70
" 140 100
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50 80
100
“ 80 60
30
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10 2 20
! 20 40 60 80 100 120 20 40 60 8 100 120 20 40 60 80 100 120
{0-01,1-02, 210} {0-01,1-502, 211} {001,102, 220}
120 100 100
100 80 80
80 o .
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(0501, 1512, 2502} (0501, 120,200} {0501, 1520, 222}
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