Counting factors of automatic sequences up to abelian equivalence

Aline Parreau

Michel Rigo Eric Rowland

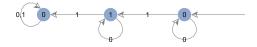
Élise Vandomme

2014 October 22

Automatic sequences

A sequence $(a_n)_{n\geq 0}$ is 2-automatic if there is DFAO whose output is a_n when fed the base-2 digits of n.

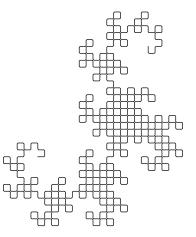
• Characteristic sequence 011010001 · · · of powers of 2:



Minimal solution to the "infinite" tower of Hanoi puzzle

Eric Rowland (Liège)

LLRLLRRLRRLRRLLLRLLRRLRRLRRL

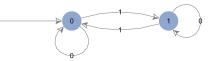


Let T(n) = (number of 1s in the binary representation of $n) \mod 2$.

The Thue–Morse sequence

 $\mathbf{t} = T(n)_{n \ge 0} = 01101001100101101001011001011001001 \cdots$

is 2-automatic. It is also cube-free.



 $\mathbf{t} = \varphi^{\infty}(\mathbf{0})$ is a fixed point of the morphism $\varphi : \mathbf{0} \to \mathbf{01}, \mathbf{1} \to \mathbf{10}$.

A sequence is 2-automatic if and only if it is the image, under a coding, of a fixed point of a 2-uniform morphism (Cobham 1972).

Given a sequence **x**, what is its complexity?

Different measures of complexity:

- factor complexity $\mathcal{P}_{\mathbf{x}}(n)$: number of distinct factors of length *n*.
- abelian complexity $\mathcal{P}_{\mathbf{x}}^{ab}(n)$: number of factors of length *n* up to abelian equivalence (e.g., 001100 \equiv_{ab} 010010).

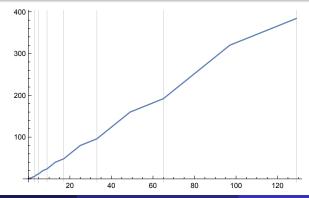
In general, $\mathcal{P}_{\mathbf{x}}^{ab}(n) \leq \mathcal{P}_{\mathbf{x}}(n)$.

Factor complexity of Thue–Morse

Theorem (Brlek 1989)

For $n \ge 3$, the factor complexity of the Thue–Morse sequence is

$$\mathcal{P}_{\mathbf{t}}(n) = \begin{cases} 4n - 2 \cdot 2^m - 4 & \text{if } 2 \cdot 2^m < n \le 3 \cdot 2^m \\ 2n + 4 \cdot 2^m - 2 & \text{if } 3 \cdot 2^m < n \le 4 \cdot 2^m \end{cases}$$



Eric Rowland (Liège)

Abelian complexity of Thue–Morse

$$\mathbf{t} = \varphi^{\infty}(\mathbf{0}) = \mathbf{0} \mathbf{1} \mathbf{1} \mathbf{0} \mathbf{1} \mathbf{0} \mathbf{1} \mathbf{1} \mathbf{0} \mathbf{1} \mathbf{1} \mathbf{0} \cdots$$
$$= (\mathbf{0} \mathbf{1})(\mathbf{1} \mathbf{0})(\mathbf{0} \mathbf{1})(\mathbf{0} \mathbf{1})(\mathbf{0} \mathbf{1})(\mathbf{0} \mathbf{1})(\mathbf{0} \mathbf{1})(\mathbf{1} \mathbf{0}) \cdots$$

The abelian complexity of Thue–Morse is simpler, since $\varphi(0) \equiv_{ab} \varphi(1)$.

PropositionFor
$$n \ge 1$$
, $\mathcal{P}_t^{ab}(n) = \begin{cases} 3 & \text{if } n \text{ is even} \\ 2 & \text{if } n \text{ is odd.} \end{cases}$

l-abelian equivalence

Definition

Two words u and v are ℓ -abelian equivalent, denoted $u \equiv_{\ell} v$, if $|u|_w = |v|_w$ for all words w of length $\leq \ell$.

Example

Let u = 011010011 and v = 001101101.

•
$$u \equiv_2 v$$
 because

•
$$|u|_0 = 4 = |v|_0, |u|_1 = 5 = |v|_1$$
 and

•
$$|u|_{00} = 1 = |v|_{00}, |u|_{01} = 3 = |v|_{01},$$
 etc.

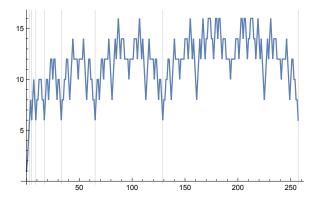
•
$$u \neq_3 v$$
 because $|u|_{101} = 1 \neq 2 = |v|_{101}$

But $01201011 \equiv_3 01012011$.

The ℓ -abelian complexity $\mathcal{P}_{\mathbf{x}}^{(\ell)}(n)$ of a sequence \mathbf{x} is the number of factors of length n up to ℓ -abelian equivalence.

$$\mathcal{P}_{\mathbf{x}}^{ab}(n) = \mathcal{P}_{\mathbf{x}}^{(1)}(n) \leq \mathcal{P}_{\mathbf{x}}^{(\ell)}(n) \leq \mathcal{P}_{\mathbf{x}}^{(\infty)}(n) = \mathcal{P}_{\mathbf{x}}(n).$$

2-abelian complexity of Thue-Morse



Not piecewise linear like $\mathcal{P}_{t}(n)$; not eventually periodic like $\mathcal{P}_{t}^{ab}(n)$.

Karhumäki–Saarela–Zamboni 2013: $\mathcal{P}_{\mathbf{t}}^{(2)}(n) = O(\log n)$.

How to explain the nested structure?

Eric Rowland (Liège)

Definition

Let $k \ge 2$. The *k*-kernel of a sequence **x** is the set of sequences

$$\mathcal{K}_{k,\mathbf{x}} = \{(\mathbf{x}_{k^e n + r})_{n \ge 0} \mid e \ge 0, \ 0 \le r \le k^e - 1\}.$$

2-kernel of the Thue–Morse sequence:

 $\begin{array}{l} \mathbf{t} = 0110100110010110100101100101 \\ e = 1, r = 0 \quad (\mathbf{t}_{2n})_{n \ge 0} = 011010011001011001011001011001 \\ e = 1, r = 1 \quad (\mathbf{t}_{2n+1})_{n \ge 0} = 10010110011010010110011001 \\ \cdots = \overline{\mathbf{t}} \end{array}$

$$\mathcal{K}_{2,t} = \{t, \overline{t}\}$$

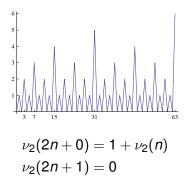
A sequence is 2-automatic if and only if its 2-kernel is finite.

Nested structure in integer sequences

Let $\nu_2(n)$ be the exponent of the largest power of 2 dividing *n*.

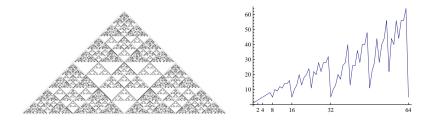
The "ruler sequence" $\nu_2(n+1)_{n\geq 0}$ is

 $01020103010201040102010301020105\cdots$.



Counting nonzero binomial coefficients modulo 8

Let $s(n) = |\{0 \le m \le n : \binom{n}{m} \neq 0 \mod 8\}|.$



1 2 3 4 5 6 7 8 5 10 9 12 11 14 14 16 5 10 13 20 13 18 20 24 \cdots

$$s(2n+1) = 2s(n)$$

$$s(4n+0) = s(2n)$$

$$s(8n+2) = -2s(n) + 2s(2n) + s(4n+2)$$

$$s(8n+6) = 2s(4n+2)$$

Definition (Allouche-Shallit 1992)

An integer sequence $s(n)_{n\geq 0}$ is *k*-regular if the \mathbb{Z} -module generated by the *k*-kernel

$$\{s(k^e n + r)_{n \ge 0} \mid e \ge 0, 0 \le r \le k^e - 1\}.$$

is finitely generated.

Theorem (Mossé 1996, Charlier–Rampersad–Shallit 2012)

The factor complexity of a k-automatic sequence is k-regular.

Question

Is the ℓ -abelian complexity of a k-automatic sequence k-regular?

Eric Rowland (Liège)

Theorem (Madill–Rampersad 2013)

The abelian complexity of the paperfolding sequence is 2-regular.

Let $\psi(0) = 01$, $\psi(1) = 00$. The period-doubling sequence is

 ${f p}=\psi^\infty(0)=0100010101000100100\cdots$.

Theorem (Karhumäki–Saarela–Zamboni 2013)

The abelian complexity of the period-doubling sequence is 2-regular.

For Thue–Morse t... The abelian complexity is 2-regular (since it is eventually periodic). Is the 2-abelian complexity 2-regular?

Proving 2-regularity

Guess and prove relations among sequences in the 2-kernel. Let $\mathbf{x}_{2^e+r} = \mathcal{P}_{\star}^{(2)}(2^e n + r)$.

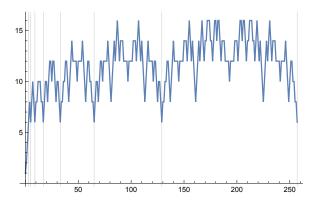
	2-	$+$, \mathbf{t} ($ +$.).
x 5	=	x ₃
x 9	=	Xo
x ₁₂	=	$-x_6 + x_7 + x_{11}$
x ₁₃	=	*/
x ₁₆	=	x ₈ x
x ₁₇	=	x ₃ x
x ₁₈	=	
x ₂₀	=	$-x_{10} + x_{11} + x_{19}$
x 21	=	A11
x ₂₂	=	$-x_3 - 2x_6 + x_7 + 3x_{10} + x_{11} - x_{19}$
x ₂₃	=	$-\mathbf{x}_3 - 3\mathbf{x}_6 + 2\mathbf{x}_7 + 3\mathbf{x}_{10} + \mathbf{x}_{11} - \mathbf{x}_{19}$
x ₂₄	=	
x ₂₅	=	x ₇ x x
x ₂₆	=	$-x_3 + x_7 + x_{10}$
x ₂₇	=	$-2x_3 + x_7 + 3x_{10} - x_{19}$
x ₂₈	=	$-2x_3 + x_7 + 3x_{10} - x_{14} + x_{15} - x_{19}$
x ₂₉	=	x ₁₅
x ₃₀	=	$-x_3 + 3x_6 - x_7 - x_{10} - x_{11} + x_{15} + x_{19}$
x 31	=	$-3\mathbf{x}_3 + 6\mathbf{x}_6 - 2\mathbf{x}_{11} - 3\mathbf{x}_{14} + 2\mathbf{x}_{15} + \mathbf{x}_{19}$
x ₃₂	=	x ₈ x
x 33	=	x ₃ x
x ₃₄	=	x 10
x 35	=	x ₁₁ x
x ₃₆	=	$-\mathbf{x}_{10} + \mathbf{x}_{11} + \mathbf{x}_{19}$
x 37	=	^19 ¥
x ₃₈	=	$-x_3 + x_{10} + x_{19}$

$$\begin{array}{rcl} g_{9} &=& -\mathbf{x}_{3} + \mathbf{x}_{11} + \mathbf{x}_{19} \\ g_{0} &=& -\mathbf{x}_{3} + \mathbf{x}_{10} + \mathbf{x}_{11} \\ 1 &=& \mathbf{x}_{11} \\ g_{2} &=& -\mathbf{x}_{3} + \mathbf{x}_{10} + \mathbf{x}_{11} \\ g_{3} &=& -2\mathbf{x}_{3} + \mathbf{x}_{10} + \mathbf{x}_{11} \\ g_{4} &=& -2\mathbf{x}_{3} - \mathbf{x}_{6} + \mathbf{x}_{7} + \mathbf{3}\mathbf{x}_{10} + \mathbf{x}_{11} - \mathbf{x}_{19} \\ g_{5} &=& -\mathbf{x}_{3} - 3\mathbf{x}_{6} + \mathbf{x}_{7} + 3\mathbf{x}_{10} + \mathbf{x}_{11} - \mathbf{x}_{19} \\ g_{5} &=& -2\mathbf{x}_{3} - 3\mathbf{x}_{6} + \mathbf{x}_{7} + 3\mathbf{x}_{10} + \mathbf{x}_{11} - \mathbf{x}_{19} \\ g_{7} &=& -2\mathbf{x}_{3} + \mathbf{x}_{7} + \mathbf{x}_{10} \\ g_{9} &=& \mathbf{x}_{7} \\ g_{1} &=& -\mathbf{x}_{3} + \mathbf{x}_{7} + \mathbf{x}_{10} \\ g_{1} &=& -\mathbf{x}_{3} - 3\mathbf{x}_{6} + 2\mathbf{x}_{7} + 3\mathbf{x}_{10} + \mathbf{x}_{11} - \mathbf{x}_{19} \\ g_{2} &=& -2\mathbf{x}_{3} - 3\mathbf{x}_{6} + 2\mathbf{x}_{7} + 5\mathbf{x}_{10} + \mathbf{x}_{11} - 2\mathbf{x}_{19} \\ g_{3} &=& -2\mathbf{x}_{3} - 3\mathbf{x}_{6} + 2\mathbf{x}_{7} + 3\mathbf{x}_{10} - \mathbf{x}_{11} - 2\mathbf{x}_{14} + \mathbf{x}_{15} \\ g_{4} &=& -4\mathbf{x}_{3} + 3\mathbf{x}_{6} + \mathbf{x}_{7} + 3\mathbf{x}_{10} - \mathbf{x}_{11} - 3\mathbf{x}_{14} + 2\mathbf{x}_{15} \\ g_{5} &=& -\mathbf{x}_{3} + \mathbf{x}_{10} + \mathbf{x}_{15} \\ g_{6} &=& -\mathbf{x}_{3} + \mathbf{x}_{10} + \mathbf{x}_{15} \\ g_{7} &=& -\mathbf{x}_{3} + 3\mathbf{x}_{6} - \mathbf{x}_{7} - \mathbf{x}_{11} + \mathbf{x}_{15} + \mathbf{x}_{19} \\ g_{1} &=& -3\mathbf{x}_{3} + 6\mathbf{x}_{6} - \mathbf{x}_{11} - 3\mathbf{x}_{14} + 2\mathbf{x}_{15} + \mathbf{x}_{19} \\ g_{1} &=& -3\mathbf{x}_{3} + 3\mathbf{x}_{6} - \mathbf{x}_{7} - \mathbf{x}_{10} - \mathbf{x}_{11} + \mathbf{x}_{15} + \mathbf{x}_{19} \\ g_{2} &=& -\mathbf{x}_{3} + 3\mathbf{x}_{6} - \mathbf{x}_{7} - \mathbf{x}_{10} - \mathbf{x}_{11} + \mathbf{x}_{15} + \mathbf{x}_{19} \\ g_{2} &=& -\mathbf{x}_{3} + 3\mathbf{x}_{6} - \mathbf{x}_{7} - \mathbf{x}_{10} - \mathbf{x}_{11} + \mathbf{x}_{15} + \mathbf{x}_{19} \\ g_{4} &=& -\mathbf{x}_{3} + 3\mathbf{x}_{6} - \mathbf{x}_{7} - \mathbf{x}_{10} - \mathbf{x}_{11} + \mathbf{x}_{15} + \mathbf{x}_{19} \\ g_{4} &=& -\mathbf{x}_{3} + 3\mathbf{x}_{6} - \mathbf{x}_{7} - \mathbf{x}_{10} - \mathbf{x}_{11} + \mathbf{x}_{15} + \mathbf{x}_{19} \\ g_{4} &=& -\mathbf{x}_{3} + 3\mathbf{x}_{6} - \mathbf{x}_{7} - \mathbf{x}_{10} - \mathbf{x}_{11} + \mathbf{x}_{15} + \mathbf{x}_{19} \\ g_{4} &=& -\mathbf{x}_{3} + 3\mathbf{x}_{6} - \mathbf{x}_{7} - \mathbf{x}_{10} - \mathbf{x}_{11} + \mathbf{x}_{15} + \mathbf{x}_{19} \\ g_{4} &=& -\mathbf{x}_{3} + 3\mathbf{x}_{6} - \mathbf{x}_{7} - \mathbf{x}_{10} - \mathbf{x}_{11} + \mathbf{x}_{15} + \mathbf{x}_{19} \\ g_{4} &=& -\mathbf{x}_{4} + \mathbf{x}_{4} + \mathbf{x}_{4}$$

Guessed by Rigo-Vandomme, proved by Greinecker (2014).

Eric Rowland (Liège)

More general approach?

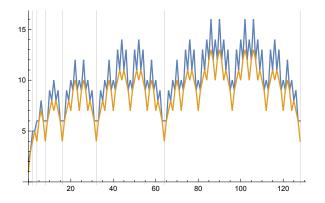


Apparent symmetry between powers of 2: $\mathcal{P}_{\mathbf{t}}^{(2)}(2^{\ell+1}-r) = \mathcal{P}_{\mathbf{t}}^{(2)}(2^{\ell}+r).$

And there is some relation between $\mathcal{P}_{\mathbf{t}}^{(2)}(2^{\ell}+r)$ and $\mathcal{P}_{\mathbf{t}}^{(2)}(r)$.

2-abelian complexity of the period-doubling sequence

Recall $\mathbf{p} = \psi^{\infty}(0) = 0100010101000100 \cdots$ where $\psi(0) = 01$, $\psi(1) = 00$.



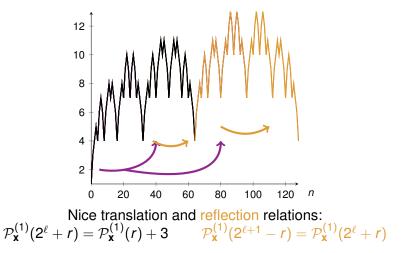
The 2-abelian complexity of **p** is closely related to the 1-abelian complexity of the 2-block coding of **p**.

Eric Rowland (Liège)

Reduction to 1-abelian complexity

The 2-block coding of \bm{p} is the fixed point of $0 \rightarrow 12, 1 \rightarrow 12, 2 \rightarrow 00$:

 $\bm{x} = 120012121200120012001212120012121200\cdots$



From relations to regularity

Do these relations imply 2-regularity?

Not clear; our relations peel off the most significant digit, whereas 2-kernel relations should peel off the least significant digit.

Theorem

Suppose $s(n)_{n\geq 0}$ satisfies

$$s(2^{\ell}+r) = egin{cases} s(r)+c & ext{if } r \leq 2^{\ell-1} \ s(2^{\ell+1}-r) & ext{if } r > 2^{\ell-1} \end{cases}$$

for all $\ell \geq \ell_0$ and $0 \leq r \leq 2^{\ell} - 1$. Then $s(n)_{n \geq 0}$ is 2-regular.

Outline of the proof:

• Prove the case c = 0.

• Prove general 2-kernel relations by induction on $n = 2^{\ell} + r$.

Proving the translation and reflection relations

The 2-block coding of **p**:

 $\mathbf{x} = 120012121200120012001212120012121200\cdots$

$$\Delta_0(n) = \max_{|u|=n} |u|_0 - \min_{|u|=n} |u|_0.$$

- $\Delta_0(n)$ is closely related to $\mathcal{P}_{\mathbf{x}}^{(1)}(n)$ since 1 and 2 alternate in \mathbf{x} .
 - Prove the translation and reflection relations for $\Delta_0(n)$.

Therefore $\mathcal{P}_{\mathbf{x}}^{(1)}(n)$ is 2-regular, and this implies the following.

Theorem

The 2-abelian complexity $\mathcal{P}_{\mathbf{p}}^{(2)}(n)$ of the period-doubling sequence is 2-regular.

The 2-block coding of Thue–Morse

 $\mathbf{y} = 132120132012132120121320\cdots$

is a fixed point of 0 \rightarrow 12, 1 \rightarrow 13, 2 \rightarrow 20, 3 \rightarrow 21.

• Consider the function
$$\Delta_{1,2}(n)$$
.

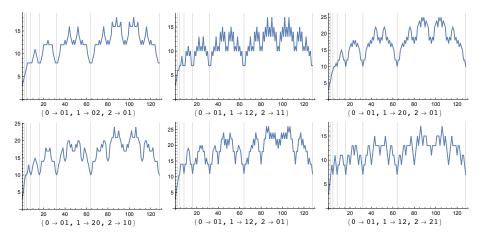
- **2** $\Delta_{1,2}(n)$ is closely related to $\mathcal{P}_{\mathbf{y}}^{(1)}(n)$ since 1, 2 alternate and 0, 3 alternate in \mathbf{y} .
- Solution Prove the translation and reflection relations for $\Delta_{1,2}(n)$.

Theorem

The 2-abelian complexity $\mathcal{P}_t^{(2)}(n)$ of the Thue–Morse sequence is 2-regular.

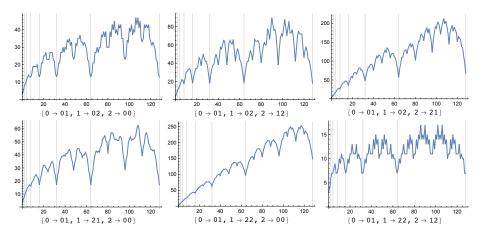
Other sequences

Some 2-abelian complexity sequences appear to satisfy the reflection:



Other sequences

But not all ...



Other sequences

But not all ...

