Counting equivalence classes of words in F_2

Bobbe Cooper and Eric Rowland

LaCIM

March 16, 2012

Eric Rowland (LaCIM)

Counting equivalence classes of words in F2

Minimal words

3 Root words

Notation

•
$$L_2 = \{a, b, \overline{a}, \overline{b}\}$$
, where $\overline{a} = a^{-1}$ and $\overline{b} = b^{-1}$.

• The free group on two generators: $F_2 = \langle a, b \rangle = \{ w_1 \cdots w_\ell \in L_2^* : w_i \neq w_{i+1}^{-1} \text{ for } 1 \leq i \leq \ell - 1 \}$ $= \{ \epsilon, a, b, \overline{a}, \overline{b}, aa, ab, a\overline{b}, ba, bb, b\overline{a}, \overline{a}b, \overline{a}\overline{a}, \overline{a}\overline{b}, \overline{b}\overline{a}, \overline{b}\overline{b}, \dots \}.$

We are interested in automorphisms of F_2 .

Example

Let $\phi(a) = b$, $\phi(b) = \overline{a}$. Then ϕ extends to an automorphism of F_2 . In this case $\phi^{-1}(a) = \overline{b}$ and $\phi^{-1}(b) = a$.

A Type I automorphism is an automorphism that permutes L_2 .

Example

Let
$$\phi(a) = ab, \phi(b) = b$$
. Then $\phi^{-1}(a) = a\overline{b}, \phi^{-1}(b) = b$.

Representatives of an equivalence class

It is easy to recognize equivalence under:

- a Type I automorphism.
- conjugation.

Select the lexicographically first word in each such class: $\{aa, abab, aab\overline{b}, aabaab, aabab\overline{a}, \dots\}$

Definition

A word $w \in F_2$ is *minimal* if $|w| \le |\phi(w)|$ for all $\phi \in Aut F_2$.

Select minimal representatives:

{*aa*}

We write $w \sim v$ if $\phi(w) = v$ for some automorphism ϕ .

Theorem (Whitehead, 1936)

If $w, v \in F_n$ such that $w \sim v$ and v is minimal, then there exists a sequence $\phi_1, \phi_2, \dots, \phi_m$ of Type I and Type II automorphisms such that

•
$$\phi_m \cdots \phi_2 \phi_1(w) = v$$
 and

• for
$$0 \le k \le m-1$$
, $|\phi_{k+1}\phi_k\cdots\phi_2\phi_1(w)| \le |\phi_k\cdots\phi_2\phi_1(w)|$,
with strict inequality unless $\phi_k\cdots\phi_2\phi_1(w)$ is minimal.

The set of Whitehead automorphisms is finite.

Corollary

There is an algorithm for determining whether $w \in F_2$ is minimal. There is an algorithm for determining whether $w, v \in F_2$ are equivalent.

Corollary

There is an algorithm for computing all equivalence classes of F_2 containing a word of length $\leq n$.

Equivalence classes

0.1	ϵ	*
1.1	а	
2.1	aa	
3.1	aaa	
4.1	aaaa	
4.2	abāb	*
4.3	aabb	*
	abab	*
5.1	aaaaa	
5.2	aabab	
5.3	aab a b	
5.4	aaabb	
	aabāb	

6.1	aaaaaa
6.2	aaabab
6.3	aaabbb
6.4	aaabab
6.5	aabaab
6.6	aababb
6.7	aabbab
6.8	aabbāb
6.9	aab aa b
6.10	aaaabb
	aaab a b
	aab aa b
7.1	aaaaaaa
7.2	aaaabab
7.3	aaaabbb

7.4	aaaab a b
7.5	aaabaab
7.6	aaababb
7.7	aaabbab
7.8	aaabbāb
7.9	aaabb a b
7.10	aaabābb
7.11	aaab aa b
7.12	aaabābb
7.13	aabaabb
7.14	aabba bb
7.15	aabb aa b
7.16	aaaaabb
	aaaab a b
	aaab aa b

Whitehead's theorem

2 Minimal words

3 Root words

Enumerating equivalence classes

Type II automorphisms

Definition

Fix $x \in L_2$ and $A \subset L_2 \setminus \{x, \overline{x}\}$. Define $\phi : L_2 \to F_2$ by

$$\phi(\mathbf{y}) = \overline{\mathbf{x}}^{\chi(\overline{\mathbf{y}} \in \mathbf{A})} \mathbf{y} \, \mathbf{x}^{\chi(\mathbf{y} \in \mathbf{A})},$$

where χ (true) = 1 and χ (false) = 0. We write $\phi = (A, x)$ and call ϕ a *Type II automorphism*.

The automorphism $(\{y\}, x)$ maps $x \mapsto x, \overline{x} \mapsto \overline{x}, y \mapsto yx$, and $\overline{y} \mapsto \overline{xy}$.

Example

Let $\phi = (\{b\}, a)$; then $\phi(a\overline{b}) = a\overline{a}\overline{b} = \overline{b}$, so $a\overline{b}$ is not minimal.

An automorphism $(\{y\}, x)$ is called a *one-letter automorphism*.

Type II automorphisms

Definition

Fix $x \in L_2$ and $A \subset L_2 \setminus \{x, \overline{x}\}$. Define $\phi : L_2 \to F_2$ by

$$\phi(\mathbf{y}) = \overline{\mathbf{x}}^{\chi(\overline{\mathbf{y}} \in \mathbf{A})} \mathbf{y} \, \mathbf{x}^{\chi(\mathbf{y} \in \mathbf{A})},$$

where χ (true) = 1 and χ (false) = 0. We write $\phi = (A, x)$ and call ϕ a *Type II automorphism*.

The automorphism $(\{y\}, x)$ maps $x \mapsto x, \overline{x} \mapsto \overline{x}, y \mapsto yx$, and $\overline{y} \mapsto \overline{xy}$.

The automorphism $(\{y, \overline{y}\}, x)$ conjugates both x and y by x. Therefore, on F_2 it suffices to consider one-letter automorphisms.

Length-2 subwords track the effects of one-letter automorphisms.

Subword counts

Let
$$C_2 = \{w_1 \cdots w_\ell \in F_2 : w_\ell \neq w_1^{-1}\}$$
.
This eliminates words like *baab*.

Definition

Let $(v)_w$ denote the number of (possibly overlapping) occurrences of v and v^{-1} in the cyclic word w.

Example

Let $w = aa\overline{bb}\overline{a}ba\overline{b}a$. The length-2 subword counts are $(aa)_w = 2$, $(bb)_w = 1$, $(ab)_w = 1 = (ba)_w$, and $(a\overline{b})_w = 2 = (\overline{b}a)_w$.

Lemma

If
$$w \in C_2$$
 and $x, y \in L_2$, then $(xy)_w = (yx)_w$.

Eric Rowland (LaCIM)

Theorem

 $w \in C_2$ is minimal if and only if $|(ab)_w - (a\overline{b})_w| \leq \min((aa)_w, (bb)_w)$.

Corollary

If w, v are minimal words with the same first letter, then wv is minimal.

The converse is not true in general: If w = a and v = abb, then wv is minimal but v is not.

Whitehead's theorem

Equivalence classes

0.1	ϵ	*
1.1	а	
2.1	aa	
3.1	aaa	
4.1	aaaa	
4.2	ab a b	*
4.3	aabb	*
	abab	*
5.1	aaaaa	
5.2	aabab	
5.3	aab a b	
5.4	aaabb	
	aabāb	

6.1	aaaaaa
6.2	aaabab
6.3	aaabbb
6.4	aaabab
6.5	aabaab
6.6	aababb
6.7	aabbab
6.8	aabbāb
6.9	aab aa b
6.10	aaaabb
	aaab a b
	aab aa b
7.1	aaaaaaa
7.2	aaaabab
7.3	aaaabbb

7.4	aaaab a b
7.5	aaabaab
7.6	aaababb
7.7	aaabbab
7.8	aaabbab
7.9	aaabb a b
7.10	aaabābb
7.11	aaab aa b
7.12	aaabābb
7.13	aabaabb
7.14	aabbabb
7.15	aabb aa b
7.16	aaaaabb
	aaaab a b
	aaab aa b

Definition

A *child* of $w \neq \epsilon$ is a word obtained by duplicating a letter in w. Define each letter $x \in L_2$ to be a child of ϵ .

Example

The children of *aabb* are *aaabb* and *aabbb*.

A child of a minimal word is necessarily minimal.

Definition

A root word is a minimal word that is not a child of any minimal word.

Root words are new minimal words with respect to duplicating a letter.

Example

The minimal word *aabb* is a root word, since neither of its parents *abb* and *aab* is minimal.

Example

The minimal words $aba\overline{b}$ and $ab\overline{a}\overline{b}$ are root words. They are not children of any minimal word; in particular they have no subword *xx*.

Characterization of root words

Recall:

Theorem

 $w \in C_2$ is minimal if and only if $|(ab)_w - (a\overline{b})_w| \leq \min((aa)_w, (bb)_w)$.

Root words are "maximally minimal".

Theorem

 $w \in C_2$ is a root word if and only if $|(ab)_w - (a\overline{b})_w| = (aa)_w = (bb)_w$.

Proof.

A minimal word *w* is a root word if and only if replacing any *xx* by *x* in *w* causes the word to lose minimality. Shortening a subword *xx* decrements $(aa)_w$ or $(bb)_w$, so *w* is a root word precisely when both inequalities hold for equality.

Corollary

Let $n \ge 1$. Then $w \in C_2$ is a root word if and only if w^n is a root word.

Corollary

If w is a root word, then $(a)_w = (b)_w = |w|/2$.

Proof.

The only length-2 subwords with unequal generator weights are aa, \overline{aa} , bb, and \overline{bb} , but $(aa)_w = (bb)_w$.

Equivalence classes

0.1	ϵ	*
1.1	а	
2.1	aa	
3.1	aaa	
4.1	aaaa	
4.2	ab a b	*
4.3	aabb	*
	abab	*
5.1	aaaaa	
5.2	aabab	
5.3	aab a b	
5.4	aaabb	
	aabāb	

6.1	aaaaaa
6.2	aaabab
6.3	aaabbb
6.4	aaabab
6.5	aabaab
6.6	aababb
6.7	aabbab
6.8	aabbāb
6.9	aab aa b
6.10	aaaabb
	aaab a b
	aab aa b
7.1	aaaaaaa
7.2	aaaabab
7.3	aaaabbb

7.4	aaaab a b
7.5	aaabaab
7.6	aaababb
7.7	aaabbab
7.8	aaabbāb
7.9	aaabb a b
7.10	aaabābb
7.11	aaab aa b
7.12	aaabābb
7.13	aabaabb
7.14	aabbabb
7.15	aabb aa b
7.16	aaaaabb
	aaaab a b
	aaab aa b

Equivalence classes

aaaaaaaa
aaaaabab
aaaaabbb
aaaaab a b
aaaabaab
aaaababb
aaaabbab
aaaabbbb
aaaabb a b
aaaabb a b
aaaabābb
aaaab aa b
aaaabābb
aaabaaab

8.15	aaabaabb
÷	:
8.37	aaababbb *
	aababa bb *
	aabbabab ★
8.38	aaabbabb *
	aababbab ∗
	abababab ★
8.39	aababbāb ★
	aababābb ∗
	aabbābab ∗
8.40	aababba b *
	aababbāb ∗
	aababaābb ∗

8.41	aaaaabb
	aaaaab a b
	aaaab aa b
	aaab aaa b
8.42	aabababb *
	aabbabab ∗
	aabbabaāb ∗
	aabb <u>a</u> bab ∗
	ababābab̄ ∗
8.43	aababababb *
	aaba bb āb ∗
	aabābbāb *
	aabbābab ∗
	ababābāb *
8.43	abbabab * ababābab * aababābb * aababbāb * aabābbāb * aabbābab * aabbābab * ababābāb *

Theorem

If w is a root word, then |w| is divisible by 4.

Proof.

We have

$$\begin{split} |w| &= (aa)_w + (bb)_w + (ab)_w + (ba)_w + (a\overline{b})_w + (\overline{b}a)_w \\ &= 2(aa)_w + 2(ab)_w + 2(a\overline{b})_w \\ &= 2|(ab)_w - (a\overline{b})_w| + 2(ab)_w + 2(a\overline{b})_w. \end{split}$$

If $(ab)_w &\geq (a\overline{b})_w$ then $|w| = 4(ab)_w$;
if $(ab)_w < (a\overline{b})_w$ then $|w| = 4(a\overline{b})_w.$

Let $\lambda(w)$ be the length of the longest subword of w of the form x^{ℓ} . For example, $\lambda(aa\overline{b}b\overline{a}ba\overline{b}a) = 3$.

Theorem

If w is a root word, then $\lambda(w) \leq \frac{|w|}{4} + 1$.

Furthermore, the root word $a^{n+1}(ba)^{n-1}b^{n+1}$ achieves this bound.

The property of being a root word is respected by equivalence classes.

Theorem

If w is a root word, $w \sim v$, and |w| = |v|, then v is a root word.

We refer to an equivalence class containing a root word as a root class.

- Whitehead's theorem
- 2 Minimal words
- 3 Root words
- 4 Enumerating equivalence classes

Number of equivalence classes of each size

w	1	2	3	4	5	6	7	8	9	10	11	
0	1											
1	1											
2	1											
3	1											
4	2	1										
5	3	1										
6	9	0	1									
7	15	0	1									
8	31	5	4	1	2							
9	52	28	15	6								
10	257	41	24	12	6							
11	792	46	35	20	13	5						
12	2076	78	293	31	48	13	5					
13	4711	1970	403	78	27	18	12	5				
14	17387	3796	1062	238	74	24	18	12	5			
15	55675	6445	2285	635	207	70	25	17	12	5		
16	159686	10303	15129	1448	859	203	67	25	17	12	5	
17	417137	110815	12926	3047	1045	448	199	68	24	17	12	1.
18	1357294	250913	35119	6728	2256	890	444	196	68	24	17	1.
19	4204439	513498	89426	16208	5001	1864	859	440	197	67	24	÷.
20	12316599	969362	678470	40127	15681	4232	1709	855	437	197	67	1.

Growing classes from other classes

length 14: aaaaaaabababb aaaaaaabbababab aaaaaaababababab aaaaaaabababababab aaaaaababababaab aaaaaabaabababab aaaaababababaaab aaaaabaaabababab aaaababababaaaab

Main goal

Enumerate equivalence classes containing a minimal word of length *n*.

W	1	2	3	4	5	6	7	8	9	10	11	
0	1											
4	1	1										
8	2	5	4	0	2							
12	5	19	249	0	31							
16	12	89	10914	0	380							
20	36	455	473406	0	4547							

Theorem

The size of a root word class is 1, 2, 3, or 5.

To the extent that equivalence classes grow regularly in size, this perhaps explains the stabilization.

The weight $min((a)_w, (b)_w)$ is invariant on equivalence classes.

The number of size-*k* classes of words of length 20 and weight 4: 990, 131, 118, 107, 92, 79, 66, 55, 41, 36, 29, 24, 17, 12, 5, 0, 0, 0, ...

Difference sequence:

 $859, 13, 11, 15, 13, 13, 11, 14, 5, 7, 5, 7, 5, 7, 5, 0, 0, \ldots$

The number of size-1 classes of words of length *n* and weight 2:

 $0, 0, 0, 0, 1, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14, 16, 16, 18, \ldots$

is an eventual linear quasi-polynomial modulo 2.

The number of size-1 classes of words of length *n* and weight 4:

 $\begin{matrix} 0, 0, 0, 0, 0, 0, 0, 0, 11, 29, 49, 70, \\ 110, 151, 217, 288, 390, 497, 641, 794, 990, \ldots \end{matrix}$

appears to be an eventual cubic quasi-polynomial modulo 4.