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Catalan numbers modulo 2

What do combinatorial sequences look like modulo pα?

C(n)n≥0 = 1,1,2,5,14,42,132,429, . . .

C(3) = 5

(C(n) mod 2)n≥0 = 1,1,0,1,0,0,0,1,0,0,0,0,0,0,0,1, . . .

Theorem (folklore)
For all n ≥ 0, C(n) is odd if and only if n + 1 is a power of 2.
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Catalan numbers modulo 4 and 8

Theorem (Eu–Liu–Yeh 2008)
For all n ≥ 0,

C(n) mod 4 =


1 if n + 1 = 2a for some a ≥ 0
2 if n + 1 = 2b + 2a for some b > a ≥ 0
0 otherwise.

Eric Rowland Congruences for diagonals of rational power series 2016 January 7 3 / 11



Automatic sequences

C(n) is odd if and only if n + 1 is a power of 2.

This automaton outputs C(n) mod 2 when fed the base-2 digits of n,
starting with the least significant digit.

(C(n) mod 2)n≥0 is 2-automatic.

Let Df denote the diagonal of a multivariate formal power series f .

Theorem (Denef–Lipshitz 1987)
Let α ≥ 1. Let P(x),Q(x) ∈ Zp[x] such that Q(0, . . . ,0) 6≡ 0 mod p.
Then the coefficient sequence of

(
D P(x)

Q(x)

)
mod pα is p-automatic.
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Catalan numbers modulo 4

∑
n≥1

C(n)xn is the diagonal of

y(2xy2 + 2xy − 1)
xy2 + 2xy + x − 1

.

By computing an automaton for a sequence modpα, we can answer. . .

Are there forbidden residues?
What is the limiting distribution of residues (if it exists)?
Is the sequence eventually periodic?
Many other questions known to be decidable.
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Catalan numbers modulo 8 and 16

Theorem (Liu–Yeh)
For all n ≥ 0, C(n) 6≡ 9 mod 16.
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Catalan numbers modulo 2α

Theorem
For all n ≥ 0,

C(n) 6≡ 17,21,26 mod 32,
C(n) 6≡ 10,13,33,37 mod 64,
C(n) 6≡ 18,54,61,65,66,69,98,106,109 mod 128.

Only ≈ 35% of the residues modulo 512 are attained by some C(n).

Open question
Does the fraction of residues modulo 2α that are attained by some
Catalan number tend to 0 as α gets large?
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Apéry numbers

A(n) =
n∑

k=0

(
n
k

)2(n + k
k

)2

arose in Apéry’s proof that ζ(3) is irrational.

A(n)n≥0 = 1,5,73,1445,33001,819005,21460825, . . .

Straub (2014):
∑
n≥0

A(n)xn is the diagonal of

1
(1− x1 − x2)(1− x3 − x4)− x1x2x3x4

.

Computing automata allowed us to resolve some conjectures.
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Apéry numbers modulo 16

Gessel (1982) proved a conjecture of Chowla–Cowles–Cowles that

A(n) mod 8 =

{
1 if n is even
5 if n is odd.

Gessel asked whether A(n) is periodic modulo 16.

Theorem
(A(n) mod 16)n≥0 is not eventually periodic.
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Apéry numbers modulo 25

Theorem (special case of a conjecture of Beukers (1995))
If there are at least two 1s and 3s in the base-5 representation of n,
then A(n) ≡ 0 mod 52.
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Apéry numbers modulo 25

Theorem
Let e2(n) be the number of 2s in the base-5 representation of n.
If n contains no 1 or 3 in base 5, then A(n) ≡ (−2)e2(n) mod 25.
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