Congruences for diagonals of rational power series

Eric Rowland Reem Yassawi

2016 January 7

Catalan numbers modulo 2

What do combinatorial sequences look like modulo p^{α} ?

 $C(n)_{n\geq 0} = 1, 1, 2, 5, 14, 42, 132, 429, \ldots$

 $(C(n) \mod 2)_{n \ge 0} = 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, \dots$

Theorem (folklore)

For all $n \ge 0$, C(n) is odd if and only if n + 1 is a power of 2.

Eric Rowland

Theorem (Eu–Liu–Yeh 2008)

For all $n \ge 0$,

$$C(n) \mod 4 = \begin{cases} 1 & \text{if } n+1=2^a \text{ for some } a \ge 0\\ 2 & \text{if } n+1=2^b+2^a \text{ for some } b > a \ge 0\\ 0 & \text{otherwise.} \end{cases}$$

Theorem 4.2. Let C_n be the nth Catalan number. First of all, $C_n \neq_8 3$ and $C_n \neq_8 7$ for any n. As for other congruences, we have

$$C_n \equiv_8 \begin{cases} 1 & \text{if } n = 0 \text{ or } 1; \\ 2 & \text{if } n = 2^a + 2^{a+1} - 1 \text{ for some } a \ge 0; \\ 4 & \text{if } n = 2^a + 2^b + 2^c - 1 \text{ for some } c > b > a \ge 0; \\ 5 & \text{if } n = 2^a - 1 \text{ for some } a \ge 2; \\ 6 & \text{if } n = 2^a + 2^b - 1 \text{ for some } b - 2 \ge a \ge 0; \\ 0 & \text{otherwise.} \end{cases}$$

Automatic sequences

C(n) is odd if and only if n + 1 is a power of 2.

This automaton outputs $C(n) \mod 2$ when fed the base-2 digits of n, starting with the least significant digit.

 $(C(n) \mod 2)_{n \ge 0}$ is 2-automatic.

Let $\mathcal{D}f$ denote the diagonal of a multivariate formal power series f.

Theorem (Denef-Lipshitz 1987)

Let $\alpha \geq 1$. Let $P(\mathbf{x}), Q(\mathbf{x}) \in \mathbb{Z}_p[\mathbf{x}]$ such that $Q(0, \dots, 0) \not\equiv 0 \mod p$. Then the coefficient sequence of $\left(\mathcal{D} \frac{P(\mathbf{x})}{Q(\mathbf{x})}\right) \mod p^{\alpha}$ is p-automatic.

Catalan numbers modulo 4

By computing an automaton for a sequence $mod p^{\alpha}$, we can answer...

- Are there forbidden residues?
- What is the limiting distribution of residues (if it exists)?
- Is the sequence eventually periodic?
- Many other questions known to be decidable.

Catalan numbers modulo 8 and 16

Theorem (Liu–Yeh)

For all $n \ge 0$, $C(n) \ne 9 \mod 16$.

Theorem

For all $n \ge 0$,

- $C(n) \neq 17, 21, 26 \mod 32$,
- $C(n) \neq 10, 13, 33, 37 \mod 64$,
- $C(n) \neq 18, 54, 61, 65, 66, 69, 98, 106, 109 \mod 128.$

Only \approx 35% of the residues modulo 512 are attained by some *C*(*n*).

Open question

Does the fraction of residues modulo 2^{α} that are attained by some Catalan number tend to 0 as α gets large?

$$A(n) = \sum_{k=0}^{n} {\binom{n}{k}}^2 {\binom{n+k}{k}}^2$$
 arose in Apéry's proof that $\zeta(3)$ is irrational.

 $A(n)_{n\geq 0} = 1, 5, 73, 1445, 33001, 819005, 21460825, \dots$

Straub (2014):
$$\sum_{n\geq 0} A(n)x^n$$
 is the diagonal of

$$\frac{1}{(1-x_1-x_2)(1-x_3-x_4)-x_1x_2x_3x_4}.$$

Computing automata allowed us to resolve some conjectures.

Apéry numbers modulo 16

Gessel (1982) proved a conjecture of Chowla–Cowles–Cowles that

$$A(n) \mod 8 = egin{cases} 1 & ext{if } n ext{ is even} \ 5 & ext{if } n ext{ is odd.} \end{cases}$$

Gessel asked whether A(n) is periodic modulo 16.

Theorem

 $(A(n) \mod 16)_{n \ge 0}$ is not eventually periodic.

Eric Rowland

Theorem (special case of a conjecture of Beukers (1995))

If there are at least two 1s and 3s in the base-5 representation of n, then $A(n) \equiv 0 \mod 5^2$.

Apéry numbers modulo 25

Theorem

Let $e_2(n)$ be the number of 2s in the base-5 representation of n. If n contains no 1 or 3 in base 5, then $A(n) \equiv (-2)^{e_2(n)} \mod 25$.

