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Algebraic sequences

A sequence (an)n≥0 of integers is algebraic if its generating function∑
n≥0 anxn is algebraic over Q(x).

Catalan numbers C(n)n≥0 = 1,1,2,5,14,42,132,429, . . . [A000108]

C(3) = 5
C(n) = 1

n+1

(2n
n

)
y =

∑
n≥0

C(n)xn =
1−
√

1− 4x
2x

satisfies xy2 − y + 1 = 0.
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Motzkin numbers

Motzkin numbers M(n)n≥0 = 1,1,2,4,9,21,51,127, . . . [A001006]

M(3) = 4

y =
∑

n≥0 M(n)xn satisfies x2y2 + (x − 1)y + 1 = 0.

Other algebraic sequences:

sequence of Fibonacci numbers, etc.
number of binary trees avoiding a pattern
number of planar maps with n vertices
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Arithmetic properties

Let pα be a prime power.

Question
If (an)n≥0 is algebraic, what does (an mod pα)n≥0 look like?

Deutsch and Sagan (2006) studied Catalan and Motzkin numbers,
Riordan numbers, central binomial and trinomial coefficients, etc.

C(n)n≥0 = 1,1,2,5,14,42,132,429, . . .
(C(n) mod 2)n≥0 = 1,1,0,1,0,0,0,1,0,0,0,0,0,0,0,1, . . .

Theorem
For all n ≥ 0, C(n) is odd if and only if n + 1 is a power of 2.

Deutsch and Sagan gave a combinatorial proof.
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Motzkin numbers modulo 8

M(n)n≥0 = 1,1,2,4,9,21,51,127, . . . [A001006]

Deutsch, Sagan, and Amdeberhan conjectured necessary and
sufficient conditions for M(n) to be divisible by 4.

. . . and that no Motzkin number is divisible by 8.

Theorem (Eu–Liu–Yeh 2008)
For all n ≥ 0, M(n) 6≡ 0 mod 8.
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Catalan numbers modulo 4

To prove this, Eu, Liu, and Yeh determined C(n) mod 4 . . .

Theorem (Eu–Liu–Yeh)
For all n ≥ 0,

C(n) mod 4 =


1 if n = 2a − 1 for some a ≥ 0
2 if n = 2b + 2a − 1 for some b > a ≥ 0
0 otherwise.

In particular, C(n) 6≡ 3 mod 4 for all n ≥ 0.
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Catalan numbers modulo 8

. . . and C(n) mod 8:
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Catalan numbers modulo 16

Liu and Yeh (2010) determined C(n) mod 16:

They also determined C(n) mod 64.
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Questions

C(n) mod 2α seems to reflect the base-2 digits of n.

Does this hold for other combinatorial sequences modulo pα?

Are piecewise functions the best notation?
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Power series congruences

Kauers, Krattenthaler, and Müller developed a systematic method for
producing congruences modulo 2α (2012) and modulo 3α (2013).

Let Φ(z) =
∑
n≥0

z2n
.
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Catalan numbers modulo 4

Theorem (Eu–Liu–Yeh)
For all n ≥ 0,

C(n) mod 4 =


1 if n = 2a − 1 for some a ≥ 0
2 if n = 2b + 2a − 1 for some b > a ≥ 0
0 otherwise.

Process the binary digits
of n, starting with the
least significant digit.

This machine is a deterministic finite automaton with output (DFAO).
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Automatic sequences

A sequence (an)n≥0 is k -automatic if there is DFAO whose output is an
when fed the base-k digits of n.

(C(n) mod 4)n≥0 = 1,1,2,1,2,2,0,1, . . . is 2-automatic.

Let T (n) = (number of 1s in the binary representation of n) mod 2.
The Thue–Morse sequence

T (n)n≥0 = 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0, . . .

is 2-automatic. It is also cube-free.
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Examples of 2-automatic sequences

Characteristic sequence of powers of 2:

Minimal solution to the “infinite” tower of Hanoi puzzle
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Automatic sequences

Automatic sequences have been
studied extensively.

Büchi 1960:
Every eventually periodic sequence
is k -automatic for every k ≥ 2.

Several natural characterizations of
automatic sequences are known.
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Algebraic characterization

Theorem (Christol–Kamae–Mendès France–Rauzy 1980)
Let (an)n≥0 be a sequence of elements in Fp. Then (an)n≥0 is
p-automatic if and only if

∑
n≥0 anxn is algebraic over Fp(x).

Algebraic sequences of integers modulo p are p-automatic.

y = 1 + 1x + 0x2 + 1x3 + 0x4 + 0x5 + 0x6 + · · · satisfies

xy2 + y + 1 = 0

in F2JxK.

The proof is constructive.

Prime powers?
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Converting algebraic to rational

The diagonal of a formal power series is

D

 ∑
n,m≥0

an,mxnym

 :=
∑
n≥0

an,nxn.

Algebraic sequences can be realized as diagonals of rational functions.

Proposition (Furstenberg 1967)

Let P(x , y) ∈ Q[x , y ] such that ∂P
∂y (0,0) 6= 0.

If f (x) ∈ QJxK is a power series with f (0) = 0 and P(x , f (x)) = 0, then

f (x) = D

(
y ∂P
∂y (xy , y)

P(xy , y)/y

)
.
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Catalan numbers

y =
∑
n≥0

C(n)xn =
1−
√

1− 4x
2x

satisfies xy2 − y + 1 = 0.

Since C(0) = 1 6= 0, consider y = 0 +
∑

n≥1 C(n)xn, which satisfies

P(x , y) := x(y + 1)2 − (y + 1) + 1 = 0.

Then ∂P
∂y (0,0) = −1 6≡ 0 mod 2, so

∑
n≥1 C(n)xn is the diagonal of

y(2xy2 + 2xy − 1)

xy2 + 2xy + x − 1
= 0x0y0 + 1x0y + 0x0y2 + 0x0y3 + 0x0y4 + 0x0y5 + · · ·

+ 0x1y0 + 1x1y + 0x1y2 − 1x1y3 + 0x1y4 + 0x1y5 + · · ·

+ 0x2y0 + 1x2y + 2x2y2 + 0x2y3 − 2x2y4 − 1x2y5 + · · ·

+ 0x3y0 + 1x3y + 4x3y2 + 5x3y3 + 0x3y4 − 5x3y5 + · · ·

+ 0x4y0 + 1x4y + 6x4y2 + 14x4y3 + 14x4y4 + 0x4y5 + · · ·

+ 0x5y0 + 1x5y + 8x5y2 + 27x5y3 + 48x5y4 + 42x5y5 + · · ·
+ · · · .
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Automata for diagonals of rational power series

Theorem (Denef–Lipshitz 1987)
Let R(x , y) and Q(x , y) be polynomials in Zp[x , y ] such that
Q(0,0) 6≡ 0 mod p, and let α ≥ 1.
Then the coefficient sequence of

D
(

R(x , y)

Q(x , y)

)
mod pα

is p-automatic.

Here Zp denotes the set of p-adic integers.
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Algorithm

Let 0 ≤ d ≤ p − 1.
The Cartier operator is the map on ZpJx , yK defined by

Λd ,d

 ∑
n,m≥0

an,mxnym

 :=
∑

n,m≥0

apn+d ,pm+dxnym.

To compute an automaton for the coefficients of D
(

R(x ,y)
Q(x ,y)

)
mod pα:

1 Compute the image of R(x ,y)
Q(x ,y) = R(x ,y)·Q(x ,y)pα−1−1

Q(x ,y)pα−1 under each Λd ,d .

2 Draw an edge labeled d from s(x ,y)
Q(x ,y)pα−1 to t(x ,y)

Q(x ,y)pα−1 if

Λd ,d

(
s(x , y)

Q(x , y)pα−1

)
=

t(x , y)

Q(x , y)pα−1 .

3 Iterate, and stop when all images have been computed.
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Catalan numbers modulo 4

∑
n≥1 C(n)xn is the diagonal of

y(2xy2 + 2xy − 1)

xy2 + 2xy + x − 1
.

By computing an automaton for a sequence modpα, we can answer. . .

Are there forbidden residues?
What is the limiting distribution of residues (if it exists)?
Is the sequence eventually periodic?
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Catalan numbers modulo 8 and 16

Theorem (Liu–Yeh)
For all n ≥ 0, C(n) 6≡ 9 mod 16.
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Catalan numbers modulo 2α

Theorem
For all n ≥ 0,

C(n) 6≡ 17,21,26 mod 32,
C(n) 6≡ 10,13,33,37 mod 64,
C(n) 6≡ 18,54,61,65,66,69,98,106,109 mod 128,
C(n) 6≡ 22,34,45,62,82,86,118,129,130,133,157,170,178,253
mod 256.

Only ≈ 35% of the residues modulo 512 are attained by some C(n).

Open question
Does the fraction of residues modulo 2α that are attained by some
Catalan number tend to 0 as α gets large?
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Catalan numbers modulo 3α

There are no known forbidden residues modulo 3α.

Open question
Do there exist α and r such that C(n) 6≡ r mod 3α for all n ≥ 0?
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Motzkin numbers modulo 8

Theorem (Eu–Liu–Yeh)
For all n ≥ 0, M(n) 6≡ 0 mod 8.

Proof:
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Motzkin numbers modulo p2

Theorem
For all n ≥ 0, M(n) 6≡ 0 mod 52.

(2 seconds; 144 states)

Theorem
For all n ≥ 0, M(n) 6≡ 0 mod 132.

(10 minutes; 2125 states)

Conjecture

Let p ∈ {31,37,61}. For all n ≥ 0, M(n) 6≡ 0 mod p2.

Open question

Are there infinitely many p such that M(n) 6≡ 0 mod p2 for all n ≥ 0?

Eric Rowland (Liège) Congruences for diagonals of power series 2014 October 16 29 / 38



A few more well-known sequences

Riordan numbers: R(n)n≥0 = 1,0,1,1,3,6,15,36, . . . [A005043]

Theorem
For all n ≥ 0, R(n) 6≡ 16 mod 32.

Number of directed animals:
P(n)n≥0 = 1,1,2,5,13,35,96,267, . . . [A005773]

Theorem
For all n ≥ 0, P(n) 6≡ 16 mod 32.

Number of restricted hexagonal polyominoes:
H(n)n≥0 = 1,1,3,10,36,137,543,2219, . . . [A002212]

Theorem
For all n ≥ 0, H(n) 6≡ 0 mod 8.
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Binary trees avoiding a pattern

Let an be the number of (n + 1)-leaf binary trees avoiding .

(an)n≥0 = 1,1,2,5,14,41,124,385, . . . [A159771]

The generating function satisfies

2x2y2 − (3x2 − 2x + 1)y + x2 − x + 1 = 0.

Theorem
For all n ≥ 0,

an 6≡ 3 mod 4,
an 6≡ 13 mod 16,
an 6≡ 21 mod 32,
an 6≡ 37 mod 64.
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Permutations avoiding a pair of patterns

Let an be the number of permutations of length n avoiding 3412 and
2143.

(an)n≥0 = 1,1,2,6,22,86,340,1340, . . . [A029759]

Atkinson (1998) showed that
∑

n≥0 anxn is algebraic.

Theorem
For all n ≥ 0,

an 6≡ 10,14 mod 16,
an 6≡ 18 mod 32,
an 6≡ 34,54 mod 64,
an 6≡ 44,66,102 mod 128,
an 6≡ 20,130,150,166,188,204,212,214,220,236,252 mod 256.
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Apéry numbers

A(n) =
n∑

k=0

(
n
k

)2(n + k
k

)2

arose in Apéry’s proof that ζ(3) is irrational.

A(n)n≥0 = 1,5,73,1445,33001,819005,21460825, . . . [A005259]

Straub (2014):
∑
n≥0

A(n)xn is the diagonal of

1
(1− x1 − x2)(1− x3 − x4)− x1x2x3x4

.

Computing automata allows us to resolve some conjectures.
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Apéry numbers modulo 16

Chowla, Cowles, and Cowles conjectured, and Gessel (1982) proved,

A(n) mod 8 =

{
1 if n is even
5 if n is odd.

Gessel asked whether A(n) is periodic modulo 16.

Theorem
The sequence (A(n) mod 16)n≥0 is not eventually periodic.
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Apéry numbers modulo 25

Beukers (1995) conjectured that if there are α 1s and 3s in the
standard base-5 representation of n then A(n) ≡ 0 mod 5α.
(Proved recently by Delaygue.)

Theorem
Beukers’ conjecture is true for α = 2.
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Apéry numbers modulo 25

Theorem
Let e2(n) be the number of 2s in the standard base-5 representation of
n. If n contains no 1 or 3 in base 5, then A(n) ≡ (−2)e2(n) mod 25.
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Scope

Christol (1990) conjectured that if (an)n≥0 is an integer sequence
which

is holonomic (satisfies a linear recurrence with polynomial
coefficients) and
grows at most exponentially,

then (an)n≥0 is the diagonal of a rational function.

(n!)n≥0 grows too quickly to be the diagonal of a rational function.

If the conjecture is true, then essentially every sequence that occurs in
combinatorics is p-automatic when reduced modulo pα.
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Symbolic pα

Write n = n` · · · n1n0 and m = m` · · ·m1m0 in base p.
Lucas’ theorem: (

n
m

)
≡
∏̀
i=0

(
ni

mi

)
mod p.

For the Apéry numbers, Gessel (1982) proved

A(n) ≡
∏̀
i=0

A(ni) mod p.

Our method doesn’t allow α to vary (for fixed p).
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