Congruences for combinatorial sequences

Eric Rowland Reem Yassawi

2013 November 1

- 2 Automatic sequences
- 3 Diagonals of rational power series
- Congruence gallery

Algebraic sequences

A sequence $(a_n)_{n\geq 0}$ of integers is algebraic if its generating function $\sum_{n\geq 0} a_n x^n$ is algebraic over $\mathbb{Q}(x)$.

Catalan numbers $C(n)_{n\geq 0} = 1, 1, 2, 5, 14, 42, 132, 429, \dots$ [A000108]

$$y = \sum_{n \ge 0} C(n) x^n$$
 satisfies $xy^2 - y + 1 = 0$.

Motzkin numbers

Motzkin numbers $M(n)_{n\geq 0} = 1, 1, 2, 4, 9, 21, 51, 127, \dots$ [A001006]

M(3) = 4

$$y = \sum_{n \ge 0} M(n) x^n$$
 satisfies $x^2 y^2 + (x - 1)y + 1 = 0$.

Other algebraic sequences:

- sequence of Fibonacci numbers
- $a(n)_{n\geq 0}$, where a(x) is an integer-valued polynomial

Arithmetic properties

Let p^{α} be a prime power.

Question

If $(a_n)_{n\geq 0}$ is algebraic, what does $(a_n \mod p^{\alpha})_{n\geq 0}$ look like?

Deutsch and Sagan (2006) studied Catalan and Motzkin numbers, Riordan numbers, central binomial and trinomial coefficients, etc.

$$C(n)_{n\geq 0} = 1, 1, 2, 5, 14, 42, 132, 429, \dots$$

$$C(n) \mod 2)_{n\geq 0} = 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, \dots$$

Theorem

For all $n \ge 0$, C(n) is odd if and only if n + 1 is a power of 2.

Deutsch and Sagan gave a combinatorial proof.

Eric Rowland

Congruences for combinatorial sequences

 $M(n)_{n\geq 0} = 1, 1, 2, 4, 9, 21, 51, 127, \dots$ [A001006]

Deutsch, Sagan, and Amdeberhan conjectured necessary and sufficient conditions for M(n) to be divisible by 4.

... and that no Motzkin number is divisible by 8.

Theorem (Eu–Liu–Yeh 2008)

For all $n \ge 0$, $M(n) \not\equiv 0 \mod 8$.

To prove this, Eu, Liu, and Yeh determined $C(n) \mod 4 \dots$

Theorem (Eu–Liu–Yeh)

For all $n \ge 0$,

$$C(n) \mod 4 = \begin{cases} 1 & \text{if } n = 2^a - 1 \text{ for some } a \ge 0\\ 2 & \text{if } n = 2^b + 2^a - 1 \text{ for some } b > a \ge 0\\ 0 & \text{otherwise.} \end{cases}$$

In particular, $C(n) \neq 3 \mod 4$ for all $n \ge 0$.

 \ldots and $C(n) \mod 8$:

Theorem 4.2. Let C_n be the nth Catalan number. First of all, $C_n \neq_8 3$ and $C_n \neq_8 7$ for any n. As for other congruences, we have

$$C_n \equiv_8 \begin{cases} 1 & \text{if } n = 0 \text{ or } 1; \\ 2 & \text{if } n = 2^a + 2^{a+1} - 1 \text{ for some } a \ge 0; \\ 4 & \text{if } n = 2^a + 2^b + 2^c - 1 \text{ for some } c > b > a \ge 0; \\ 5 & \text{if } n = 2^a - 1 \text{ for some } a \ge 2; \\ 6 & \text{if } n = 2^a + 2^b - 1 \text{ for some } b - 2 \ge a \ge 0; \\ 0 & \text{otherwise.} \end{cases}$$

Catalan numbers modulo 16

Liu and Yeh (2010) determined $C(n) \mod 16$:

Theorem 5.5. Let c_n be the n-th Catalan number. First of all, $c_n \not\equiv_{16} 3, 7, 9, 11, 15$ for any n. As for the other congruences, we have

$$c_{n} \equiv_{16} \begin{cases} 1\\5\\13\\2\\10\\6\\14\\4\\2\\2\\10\\4\\12\\3\\0\\if \ d(\alpha) = 1, \ \alpha = 1 \ and \\\{ \begin{array}{l}\beta \leq 1, \\\beta = 2, \\\beta \geq 3, \\\\2 \\\beta = 1, \\\{ (\alpha = 2, \beta \geq 2) \ or \ (\alpha \geq 3, \beta \leq 1), \\(\alpha = 2, \beta \leq 1) \ or \ (\alpha \geq 3, \beta \leq 1), \\(\alpha = 2, \beta \leq 1) \ or \ (\alpha \geq 3, \beta \geq 2), \\if \ d(\alpha) = 2 \ and \\\{ \begin{array}{l}zr(\alpha) \equiv_{2} 0, \\zr(\alpha) = 1, \\8 \ if \ d(\alpha) = 3, \\0 \ if \ d(\alpha) \geq 4. \end{cases}$$
where $\alpha = (CF_{2}(n+1)-1)/2 \ and \ \beta = \omega_{2}(n+1) \ (or \ \beta = \min\{i \mid n_{i} = 0\}).$

They also determined $C(n) \mod 64$.

 $C(n) \mod 2^{\alpha}$ seems to reflect the base-2 digits of *n*.

Does this hold for other combinatorial sequences modulo p^{α} ?

Are piecewise functions the best notation?

Power series congruences

Kauers, Krattenthaler, and Müller developed a systematic method for producing congruences modulo 2^{α} (2012) and modulo 3^{α} (2013).

Let
$$\Phi(z) = \sum_{n\geq 0} z^{2^n}$$
.

$$\sum_{n=0}^{\infty} \operatorname{Cat}_{n} z^{n} = 32z^{5} + 16z^{4} + 6z^{2} + 13z + 1 + \left(32z^{4} + 32z^{3} + 20z^{2} + 44z + 40\right) \Phi(z) \\ + \left(16z^{3} + 56z^{2} + 30z + 52 + \frac{12}{z}\right) \Phi^{2}(z) + \left(32z^{3} + 60z + 60 + \frac{28}{z}\right) \Phi^{3}(z) \\ + \left(32z^{3} + 16z^{2} + 48z + 18 + \frac{35}{z}\right) \Phi^{4}(z) + \left(32z^{2} + 44\right) \Phi^{5}(z) \\ + \left(48z + 8 + \frac{50}{z}\right) \Phi^{6}(z) + \left(32z + 32 + \frac{4}{z}\right) \Phi^{7}(z) \quad \text{modulo } 64$$

3 Diagonals of rational power series

Theorem (Eu–Liu–Yeh)

For all $n \ge 0$,

$$C(n) \mod 4 = \begin{cases} 1 & \text{if } n = 2^a - 1 \text{ for some } a \ge 0\\ 2 & \text{if } n = 2^b + 2^a - 1 \text{ for some } b > a \ge 0\\ 0 & \text{otherwise.} \end{cases}$$

Process the binary digits of *n*, starting with the least significant digit.

This machine is a deterministic finite automaton with output (DFAO).

Automatic sequences

A sequence $(a_n)_{n\geq 0}$ is *k*-automatic if there is DFAO whose output is a_n when fed the base-*k* digits of *n*.

 $(C(n) \mod 4)_{n \ge 0} = 1, 1, 2, 1, 2, 2, 0, 1, \dots$ is 2-automatic.

Let T(n) = (number of 1s in the binary representation of $n) \mod 2$. The Thue–Morse sequence

$$T(n)_{n\geq 0} = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, \dots$$

is 2-automatic. It is also cube-free.

Automatic sequences have been studied extensively.

Büchi 1960: Every eventually periodic sequence is *k*-automatic for every $k \ge 2$.

Several natural characterizations of automatic sequences are known.

Theorem (Christol-Kamae-Mendès France-Rauzy 1980)

Let $(a_n)_{n\geq 0}$ be a sequence of elements in \mathbb{F}_p . Then $(a_n)_{n\geq 0}$ is *p*-automatic if and only if $\sum_{n\geq 0} a_n x^n$ is algebraic over $\mathbb{F}_p(x)$.

Algebraic sequences of integers modulo *p* are *p*-automatic.

$$y = 1 + 1x + 0x^2 + 1x^3 + 0x^4 + 0x^5 + 0x^6 + \cdots$$
 satisfies
 $xy^2 + y + 1 = 0$

in $\mathbb{F}_2[[x]]$.

The proof is constructive.

Prime powers?

Eric Rowland

Automata for diagonals of rational power series

The diagonal of a formal power series is

$$\mathcal{D}\left(\sum_{n_1,\ldots,n_k\geq 0}a_{n_1,\ldots,n_k}x_1^{n_1}\cdots x_k^{n_k}\right):=\sum_{n\geq 0}a_{n,\ldots,n}x^n.$$

Theorem (Denef–Lipshitz 1987)

Let $R(x_1, \ldots, x_k)$ and $Q(x_1, \ldots, x_k)$ be polynomials in $\mathbb{Z}_p[x_1, \ldots, x_k]$ such that $Q(0, \ldots, 0) \neq 0 \mod p$, and let $\alpha \ge 1$. Then the coefficient sequence of

$$\mathcal{D}\left(rac{R(x_1,\ldots,x_k)}{Q(x_1,\ldots,x_k)}
ight) \mod p^{lpha}$$

is p-automatic.

Here \mathbb{Z}_p denotes the set of *p*-adic integers.

Eric Rowland

To apply this theorem to an algebraic sequence, we need to realize it as the diagonal of a rational function.

Proposition (Furstenberg 1967)

Let $P(x, y) \in \mathbb{Z}_p[x, y]$ such that $\frac{\partial P}{\partial y}(0, 0) \neq 0$. If $f(x) \in \mathbb{Z}_p[[x]]$ is a power series with f(0) = 0 and P(x, f(x)) = 0, then

$$f(x) = \mathcal{D}\left(\frac{y\frac{\partial P}{\partial y}(xy, y)}{P(xy, y)/y}\right).$$

If $\frac{\partial P}{\partial y}(0,0) \neq 0 \mod p$, multiply by $\left(\frac{\partial P}{\partial y}(0,0)\right)^{-1} \mod p^{\alpha}$ to get a denominator Q(x,y) with $Q(0,0) \neq 0 \mod p$.

Algorithm

Let P(x, y) be a polynomial satisfied by $f(x) \in \mathbb{Z}_{p}[[x]]$.

- Check that f(0) = 0 and $\frac{\partial P}{\partial v}(0,0) \neq 0 \mod p$.
- 2 Compute a bivariate rational function of which f(x) is the diagonal.
- Sompute an automaton for the coefficients of $f(x) \mod p^{\alpha}$.

All this is purely mechanical.

By computing an automaton for a sequence $mod p^{\alpha}$, we can answer...

- Are there forbidden residues?
- What is the limiting distribution of residues (if it exists)?
- Is the sequence eventually periodic?

Catalan numbers modulo 4

$$y = \sum_{n \ge 0} C(n) x^n$$
 satisfies $xy^2 - y + 1 = 0$.

Since $C(0) = 1 \neq 0$, consider $y = 0 + \sum_{n \geq 1} C(n)x^n$, which satisfies

$$P(x,y) := x(y+1)^2 - (y+1) + 1 = 0.$$

Then $\frac{\partial P}{\partial y}(0,0) = -1 \neq 0 \mod 2$, so $\sum_{n\geq 1} C(n)x^n$ is the diagonal of $\frac{y(2xy^2 + 2xy - 1)}{xy^2 + 2xy + x - 1}$.

- 2 Automatic sequences
- 3 Diagonals of rational power series

Catalan numbers modulo 8 and 16

Theorem (Liu–Yeh)

For all $n \ge 0$, $C(n) \ne 9 \mod 16$.

Catalan numbers modulo 2^{α}

Theorem

For all $n \ge 0$,

- $C(n) \neq 17, 21, 26 \mod 32$,
- $C(n) \neq 10, 13, 33, 37 \mod 64$,
- $C(n) \neq 18, 54, 61, 65, 66, 69, 98, 106, 109 \mod 128$,
- C(n) ≠ 22, 34, 45, 62, 82, 86, 118, 129, 130, 133, 157, 170, 178, 253 mod 256.

Only \approx 35% of the residues modulo 512 are attained by some *C*(*n*).

Open question

Does the fraction of residues modulo 2^{α} that are attained by some Catalan number tend to 0 as α gets large?

Catalan numbers modulo 3^{α}

There are no known forbidden residues modulo 3^{α} .

Open question

Do there exist α and r such that $C(n) \not\equiv r \mod 3^{\alpha}$ for all $n \ge 0$?

Motzkin numbers modulo 8

Theorem (Eu–Liu–Yeh)

For all $n \ge 0$, $M(n) \not\equiv 0 \mod 8$.

Motzkin numbers modulo p^2

Theorem

For all $n \ge 0$, $M(n) \not\equiv 0 \mod 5^2$.

(2 seconds; 144 states)

Theorem

For all $n \ge 0$, $M(n) \not\equiv 0 \mod 13^2$.

(10 minutes; 2125 states)

Conjecture

Let $p \in \{31, 37, 61\}$. For all $n \ge 0$, $M(n) \not\equiv 0 \mod p^2$.

Open question

Are there infinitely many p such that $M(n) \neq 0 \mod p^2$ for all $n \ge 0$?

Eric Rowland

A few more well-known sequences

Riordan numbers: $R(n)_{n\geq 0} = 1, 0, 1, 1, 3, 6, 15, 36, \dots$ [A005043]

Theorem

For all $n \ge 0$, $R(n) \ne 16 \mod 32$.

Number of directed animals: $P(n)_{n\geq 0} = 1, 1, 2, 5, 13, 35, 96, 267, \dots$ [A005773]

Theorem

For all $n \ge 0$, $P(n) \not\equiv 16 \mod 32$.

Number of restricted hexagonal polyominoes: $H(n)_{n\geq 0} = 1, 1, 3, 10, 36, 137, 543, 2219, \dots$ [A002212]

Theorem

For all $n \ge 0$, $H(n) \not\equiv 0 \mod 8$.

Binary trees avoiding a pattern

Let a_n be the number of (n + 1)-leaf binary trees avoiding $\sum_{n \to \infty} d_n$.

 $(a_n)_{n>0} = 1, 1, 2, 5, 14, 41, 124, 385, \dots$ [A159771]

The generating function satisfies

$$2x^2y^2 - (3x^2 - 2x + 1)y + x^2 - x + 1 = 0$$

Theorem

For all n > 0,

 $a_n \not\equiv 3 \mod 4$, $a_n \not\equiv 13 \mod 16$, $a_n \not\equiv 21 \mod 32$, $a_n \not\equiv 37 \mod 64$.

Eric Rowland

Congruences for combinatorial sequences

Permutations avoiding a pair of patterns

Let a_n be the number of permutations of length *n* avoiding 3412 and 2143.

 $(a_n)_{n\geq 0} = 1, 1, 2, 6, 22, 86, 340, 1340, \dots$ [A029759]

Atkinson (1998) showed that $\sum_{n>0} a_n x^n$ is algebraic.

Theorem	
For all $n \ge 0$,	
$a_n \neq 10, 14$	mod 16,
$a_n \neq 18$	mod 32,
$a_n eq 34,54$	mod 64,
$a_n eq 44, 66, 102$	mod 128,
$a_n \neq 20, 130, 150, 166, 188, 204, 212, 214, 220, 236, 252$	mod 256.

 $A(n) = \sum_{k=0}^{n} {\binom{n}{k}}^{2} {\binom{n+k}{k}}^{2}$ arose in Apéry's proof that $\zeta(3)$ is irrational.

 $A(n)_{n\geq 0} = 1, 5, 73, 1445, 33001, 819005, 21460825, \dots$ [A005259]

 $\sum_{n\geq 0} A(n)x^n \text{ is the diagonal of} \\ \frac{1}{(1-x_1)(1-x_2)(1-x_3)(1-x_4)(1-x_5)-(1-x_1)x_1x_2x_3}.$

Computing automata allows us to resolve some conjectures.

Apéry numbers modulo 16

Chowla, Cowles, and Cowles conjectured and Gessel (1982) proved

$$A(n) \mod 8 = egin{cases} 1 & ext{if } n ext{ is even} \ 5 & ext{if } n ext{ is odd.} \end{cases}$$

Gessel asked whether A(n) is periodic modulo 16.

Theorem

The sequence $(A(n) \mod 16)_{n \ge 0}$ is not eventually periodic.

Eric Rowland

Congruences for combinatorial sequences

2013 November 1 32 / 35

Apéry numbers modulo 25

Beukers (1995) conjectured that if there are α 1s and 3s in the standard base-5 representation of *n* then $A(n) \equiv 0 \mod 5^{\alpha}$. (Proved two weeks ago by Delaygue.)

Theorem

Beukers' conjecture is true for $\alpha = 2$.

Eric Rowland

Apéry numbers modulo 25

Theorem

Let $e_2(n)$ be the number of 2s in the standard base-5 representation of *n*. If *n* contains no 1 or 3 in base 5, then $A(n) \equiv (-2)^{e_2(n)} \mod 25$.

Write $n = n_1 \cdots n_1 n_0$ and $m = m_1 \cdots m_1 m_0$ in base *p*. Lucas' theorem:

$$\binom{n}{m} \equiv \prod_{i=0}^{l} \binom{n_i}{m_i} \mod p.$$

For the Apéry numbers, Gessel (1982) proved

$$A(n) \equiv \prod_{i=0}^{l} A(n_i) \mod p.$$

We don't yet have a way of letting α vary (for fixed p).