Computing congruences for combinatorial sequences

Eric Rowland Reem Yassawi

2015 August 6

Catalan and Motzkin numbers

 $C(n)_{n\geq 0} = 1, 1, 2, 5, 14, 42, 132, 429, \dots$ [A000108]

Question

What does a combinatorial sequence look like modulo p^{α} ?

Deutsch and Sagan (2006) studied Catalan and Motzkin numbers, Riordan numbers, central binomial and trinomial coefficients, etc.

 $C(n)_{n\geq 0} = 1, 1, 2, 5, 14, 42, 132, 429, \dots$ $(C(n) \mod 2)_{n\geq 0} = 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, \dots$

Theorem

For all $n \ge 0$, C(n) is odd if and only if n + 1 is a power of 2.

 $M(n)_{n\geq 0} = 1, 1, 2, 4, 9, 21, 51, 127, \dots$ [A001006]

Deutsch, Sagan, and Amdeberhan conjectured necessary and sufficient conditions for M(n) to be divisible by 4.

... and that no Motzkin number is divisible by 8.

Theorem (Eu–Liu–Yeh 2008)

For all $n \ge 0$, $M(n) \not\equiv 0 \mod 8$.

To prove this, Eu, Liu, and Yeh determined $C(n) \mod 4 \dots$

Theorem (Eu–Liu–Yeh)

For all $n \ge 0$,

$$C(n) \mod 4 = \begin{cases} 1 & \text{if } n = 2^a - 1 \text{ for some } a \ge 0\\ 2 & \text{if } n = 2^b + 2^a - 1 \text{ for some } b > a \ge 0\\ 0 & \text{otherwise.} \end{cases}$$

In particular, $C(n) \neq 3 \mod 4$ for all $n \ge 0$.

 \dots and $C(n) \mod 8$:

Theorem 4.2. Let C_n be the nth Catalan number. First of all, $C_n \neq_8 3$ and $C_n \neq_8 7$ for any n. As for other congruences, we have

$$C_n \equiv_8 \begin{cases} 1 & \text{if } n = 0 \text{ or } 1; \\ 2 & \text{if } n = 2^a + 2^{a+1} - 1 \text{ for some } a \ge 0; \\ 4 & \text{if } n = 2^a + 2^b + 2^c - 1 \text{ for some } c > b > a \ge 0; \\ 5 & \text{if } n = 2^a - 1 \text{ for some } a \ge 2; \\ 6 & \text{if } n = 2^a + 2^b - 1 \text{ for some } b - 2 \ge a \ge 0; \\ 0 & \text{otherwise.} \end{cases}$$

Catalan numbers modulo 16

Liu and Yeh (2010) determined $C(n) \mod 16$:

Theorem 5.5. Let c_n be the n-th Catalan number. First of all, $c_n \not\equiv_{16} 3, 7, 9, 11, 15$ for any n. As for the other congruences, we have

They also determined $C(n) \mod 64$.

Is there a systematic way to obtain this information?

 $C(n) \mod 2^{\alpha}$ reflects the base-2 digits of *n*. Does this hold for other combinatorial sequences modulo p^{α} ?

Are piecewise functions the best notation?

Power series congruences

Kauers, Krattenthaler, and Müller (2012) developed a systematic method for producing congruences of power series.

Let
$$\Phi(z) = \sum_{n \ge 0} z^{2^n}$$
.

$$\sum_{n=0}^{\infty} \operatorname{Cat}_{n} z^{n} = 32z^{5} + 16z^{4} + 6z^{2} + 13z + 1 + \left(32z^{4} + 32z^{3} + 20z^{2} + 44z + 40\right)\Phi(z) \\ + \left(16z^{3} + 56z^{2} + 30z + 52 + \frac{12}{z}\right)\Phi^{2}(z) + \left(32z^{3} + 60z + 60 + \frac{28}{z}\right)\Phi^{3}(z) \\ + \left(32z^{3} + 16z^{2} + 48z + 18 + \frac{35}{z}\right)\Phi^{4}(z) + \left(32z^{2} + 44\right)\Phi^{5}(z) \\ + \left(48z + 8 + \frac{50}{z}\right)\Phi^{6}(z) + \left(32z + 32 + \frac{4}{z}\right)\Phi^{7}(z) \quad \text{modulo 64}$$

Automatic sequences

Theorem (Eu–Liu–Yeh)

For all $n \ge 0$,

$$C(n) \bmod 4 = \begin{cases} 1 & \text{if } n = 2^a - 1 \text{ for some } a \ge 0 \\ 2 & \text{if } n = 2^b + 2^a - 1 \text{ for some } b > a \ge 0 \\ 0 & \text{otherwise.} \end{cases}$$

This automaton outputs $C(n) \mod 4$ when fed the base-2 digits of *n*, starting with the least significant digit:

$$(C(n) \mod 4)_{n \ge 0} = 1, 1, 2, 1, 2, 2, 0, 1, \dots$$
 is 2-automatic.

Eric Rowland (Liège, Belgium)

Congruences for combinatorial sequences

Automata for diagonals of rational power series

The diagonal of a formal power series is

$$\mathcal{D}\left(\sum_{n,m\geq 0}a_{n,m}x^ny^m\right):=\sum_{n\geq 0}a_{n,n}x^n.$$

Theorem (Denef–Lipshitz 1987)

Let R(x, y) and Q(x, y) be polynomials in $\mathbb{Z}_p[x, y]$ such that $Q(0, 0) \neq 0 \mod p$, and let $\alpha \ge 1$. Then the coefficient sequence of

$$\mathcal{D}\left(rac{R(x,y)}{Q(x,y)}
ight) mod p^lpha$$

is p-automatic.

Algorithm

Let $0 \le d \le p - 1$.

The Cartier operator is the map on $\mathbb{Z}_{p}[\![x, y]\!]$ defined by

$$\Lambda_{d,d}\left(\sum_{n,m\geq 0}a_{n,m}x^ny^m\right):=\sum_{n,m\geq 0}a_{pn+d,pm+d}x^ny^m.$$

To compute an automaton for the coefficients of $\mathcal{D}\left(\frac{R(x,y)}{Q(x,y)}\right) \mod p^{\alpha}$:

Compute the image of \$\frac{R(x,y)}{Q(x,y)} = \frac{R(x,y) \cdot Q(x,y) p^{\alpha-1} - 1}{Q(x,y) p^{\alpha-1}}\$ under each \$\Lambda_{d,d}\$.
 Draw an edge labeled \$d\$ from \$\frac{s(x,y)}{Q(x,y) p^{\alpha-1}}\$ to \$\frac{t(x,y)}{Q(x,y) p^{\alpha-1}}\$ if \$\Lambda_{d,d}\$ \$\left(\frac{s(x,y)}{Q(x,y) p^{\alpha-1}} \right) \equiv \frac{t(x,y)}{Q(x,y) p^{\alpha-1}}\$ mod \$p^{\alpha}\$.

Iterate, and stop when all images have been computed.

Catalan numbers modulo 4

 $\sum_{n \ge 1} C(n)x^n \text{ is the diagonal of}$ $\frac{y(2xy^2 + 2xy - 1)}{xy^2 + 2xy + x - 1}.$

Apply $\Lambda_{0,0}$ and reduce modulo 4. Apply $\Lambda_{1,1}$ and reduce modulo 4, etc.

By computing an automaton for a sequence $mod p^{\alpha}$, we can answer...

- Are there forbidden residues?
- What is the limiting distribution of residues (if it exists)?
- Is the sequence eventually periodic?
- Many other decidable properties.

Catalan numbers modulo 8 and 16

Theorem (Liu–Yeh)

For all $n \ge 0$, $C(n) \ne 9 \mod 16$.

Catalan numbers modulo 2^{α}

Theorem

For all $n \ge 0$,

- $C(n) \neq 17, 21, 26 \mod 32$,
- $C(n) \neq 10, 13, 33, 37 \mod 64$,
- $C(n) \neq 18, 54, 61, 65, 66, 69, 98, 106, 109 \mod 128$,
- C(n) ≠ 22, 34, 45, 62, 82, 86, 118, 129, 130, 133, 157, 170, 178, 253 mod 256.

Only \approx 35% of the residues modulo 512 are attained by some *C*(*n*).

Open question

Does the fraction of residues modulo 2^{α} that are attained by some Catalan number tend to 0 as α gets large?

Catalan numbers modulo 3^{α}

There are no known forbidden residues modulo 3^{α} .

Open question Do there exist α and r such that $C(n) \not\equiv r \mod 3^{\alpha}$ for all $n \ge 0$?

$$A(n) = \sum_{k=0}^{n} {\binom{n}{k}}^2 {\binom{n+k}{k}}^2$$
 arose in Apéry's proof that $\zeta(3)$ is irrational.

 $A(n)_{n\geq 0} = 1, 5, 73, 1445, 33001, 819005, 21460825, \dots$ [A005259]

Straub (2014):
$$\sum_{n\geq 0} A(n)x^n$$
 is the diagonal of

$$\frac{1}{(1-x_1-x_2)(1-x_3-x_4)-x_1x_2x_3x_4}.$$

Computing automata allows us to resolve some conjectures.

Apéry numbers modulo 16

Gessel (1982) proved a conjecture of Chowla–Cowles–Cowles that

$$A(n) \mod 8 = \begin{cases} 1 & \text{if } n \text{ is even} \\ 5 & \text{if } n \text{ is odd.} \end{cases}$$

Gessel asked whether A(n) is periodic modulo 16.

Theorem

The sequence $(A(n) \mod 16)_{n>0}$ is not eventually periodic.

Eric Rowland (Liège, Belgium)

Congruences for combinatorial sequences

Apéry numbers modulo 25

Beukers (1995) conjectured that if there are α 1s and 3s in the base-5 representation of *n* then $A(n) \equiv 0 \mod 5^{\alpha}$. (Proved recently by Delaygue.)

Theorem

Beukers' conjecture is true for $\alpha = 2$.

Apéry numbers modulo 25

Theorem

Let $e_2(n)$ be the number of 2s in the base-5 representation of n. If n contains no 1 or 3 in base 5, then $A(n) \equiv (-2)^{e_2(n)} \mod 25$.

Christol (1990) conjectured that if an integer sequence

- is holonomic and
- grows at most exponentially,

then it is the diagonal of a rational function.

 $(n!)_{n\geq 0}$ grows too quickly to be the diagonal of a rational function.

If the conjecture is true, then many sequences that occur in combinatorics are *p*-automatic when reduced modulo p^{α} .

C(n) is the coefficient of x^0 in $(1 - x)(\frac{1}{x} + 2 + x)^n$.

With Zeilberger, we showed how to compute automata for constant terms modulo p^{α} .

What is the relationship between diagonals of rational power series and constant terms of $P(x)Q(x)^n$?