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Catalan and Motzkin numbers

C(n)n≥0 = 1,1,2,5,14,42,132,429, . . . [A000108]

C(3) = 5

M(n)n≥0 = 1,1,2,4,9,21,51,127, . . . [A001006]

M(3) = 4
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Arithmetic properties

Question
What does a combinatorial sequence look like modulo pα?

Deutsch and Sagan (2006) studied Catalan and Motzkin numbers,
Riordan numbers, central binomial and trinomial coefficients, etc.

C(n)n≥0 = 1,1,2,5,14,42,132,429, . . .
(C(n) mod 2)n≥0 = 1,1,0,1,0,0,0,1,0,0,0,0,0,0,0,1, . . .

Theorem
For all n ≥ 0, C(n) is odd if and only if n + 1 is a power of 2.
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Motzkin numbers modulo 8

M(n)n≥0 = 1,1,2,4,9,21,51,127, . . . [A001006]

Deutsch, Sagan, and Amdeberhan conjectured necessary and
sufficient conditions for M(n) to be divisible by 4.

. . . and that no Motzkin number is divisible by 8.

Theorem (Eu–Liu–Yeh 2008)
For all n ≥ 0, M(n) 6≡ 0 mod 8.
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Catalan numbers modulo 4

To prove this, Eu, Liu, and Yeh determined C(n) mod 4 . . .

Theorem (Eu–Liu–Yeh)
For all n ≥ 0,

C(n) mod 4 =


1 if n = 2a − 1 for some a ≥ 0
2 if n = 2b + 2a − 1 for some b > a ≥ 0
0 otherwise.

In particular, C(n) 6≡ 3 mod 4 for all n ≥ 0.
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Catalan numbers modulo 8

. . . and C(n) mod 8:
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Catalan numbers modulo 16

Liu and Yeh (2010) determined C(n) mod 16:

They also determined C(n) mod 64.
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Questions

Is there a systematic way to obtain this information?

C(n) mod 2α reflects the base-2 digits of n.
Does this hold for other combinatorial sequences modulo pα?

Are piecewise functions the best notation?
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Power series congruences

Kauers, Krattenthaler, and Müller (2012) developed a systematic
method for producing congruences of power series.

Let Φ(z) =
∑
n≥0

z2n
.
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Automatic sequences

Theorem (Eu–Liu–Yeh)
For all n ≥ 0,

C(n) mod 4 =


1 if n = 2a − 1 for some a ≥ 0
2 if n = 2b + 2a − 1 for some b > a ≥ 0
0 otherwise.

This automaton outputs C(n) mod 4 when fed the base-2 digits of n,
starting with the least significant digit:

(C(n) mod 4)n≥0 = 1,1,2,1,2,2,0,1, . . . is 2-automatic.
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Automata for diagonals of rational power series

The diagonal of a formal power series is

D

 ∑
n,m≥0

an,mxnym

 :=
∑
n≥0

an,nxn.

Theorem (Denef–Lipshitz 1987)
Let R(x , y) and Q(x , y) be polynomials in Zp[x , y ] such that
Q(0,0) 6≡ 0 mod p, and let α ≥ 1.
Then the coefficient sequence of

D
(

R(x , y)

Q(x , y)

)
mod pα

is p-automatic.
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Algorithm

Let 0 ≤ d ≤ p − 1.
The Cartier operator is the map on ZpJx , yK defined by

Λd ,d

 ∑
n,m≥0

an,mxnym

 :=
∑

n,m≥0

apn+d ,pm+dxnym.

To compute an automaton for the coefficients of D
(

R(x ,y)
Q(x ,y)

)
mod pα:

1 Compute the image of R(x ,y)
Q(x ,y) = R(x ,y)·Q(x ,y)pα−1−1

Q(x ,y)pα−1 under each Λd ,d .

2 Draw an edge labeled d from s(x ,y)
Q(x ,y)pα−1 to t(x ,y)

Q(x ,y)pα−1 if

Λd ,d

(
s(x , y)

Q(x , y)pα−1

)
≡ t(x , y)

Q(x , y)pα−1 mod pα.

3 Iterate, and stop when all images have been computed.
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Catalan numbers modulo 4∑
n≥1

C(n)xn is the diagonal of

y(2xy2 + 2xy − 1)

xy2 + 2xy + x − 1
.

Apply Λ0,0 and reduce modulo 4.
Apply Λ1,1 and reduce modulo 4, etc.

By computing an automaton for a sequence modpα, we can answer. . .

Are there forbidden residues?
What is the limiting distribution of residues (if it exists)?
Is the sequence eventually periodic?
Many other decidable properties.
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Catalan numbers modulo 8 and 16

Theorem (Liu–Yeh)
For all n ≥ 0, C(n) 6≡ 9 mod 16.
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Catalan numbers modulo 2α

Theorem
For all n ≥ 0,

C(n) 6≡ 17,21,26 mod 32,
C(n) 6≡ 10,13,33,37 mod 64,
C(n) 6≡ 18,54,61,65,66,69,98,106,109 mod 128,
C(n) 6≡ 22,34,45,62,82,86,118,129,130,133,157,170,178,253
mod 256.

Only ≈ 35% of the residues modulo 512 are attained by some C(n).

Open question
Does the fraction of residues modulo 2α that are attained by some
Catalan number tend to 0 as α gets large?
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Catalan numbers modulo 3α

There are no known forbidden residues modulo 3α.

Open question
Do there exist α and r such that C(n) 6≡ r mod 3α for all n ≥ 0?
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Apéry numbers

A(n) =
n∑

k=0

(
n
k

)2(n + k
k

)2

arose in Apéry’s proof that ζ(3) is irrational.

A(n)n≥0 = 1,5,73,1445,33001,819005,21460825, . . . [A005259]

Straub (2014):
∑
n≥0

A(n)xn is the diagonal of

1
(1− x1 − x2)(1− x3 − x4)− x1x2x3x4

.

Computing automata allows us to resolve some conjectures.
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Apéry numbers modulo 16

Gessel (1982) proved a conjecture of Chowla–Cowles–Cowles that

A(n) mod 8 =

{
1 if n is even
5 if n is odd.

Gessel asked whether A(n) is periodic modulo 16.

Theorem
The sequence (A(n) mod 16)n≥0 is not eventually periodic.
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Apéry numbers modulo 25

Beukers (1995) conjectured that if there are α 1s and 3s in the base-5
representation of n then A(n) ≡ 0 mod 5α.
(Proved recently by Delaygue.)

Theorem
Beukers’ conjecture is true for α = 2.
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Apéry numbers modulo 25

Theorem
Let e2(n) be the number of 2s in the base-5 representation of n. If n
contains no 1 or 3 in base 5, then A(n) ≡ (−2)e2(n) mod 25.
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Scope

Christol (1990) conjectured that if an integer sequence
is holonomic and
grows at most exponentially,

then it is the diagonal of a rational function.

(n!)n≥0 grows too quickly to be the diagonal of a rational function.

If the conjecture is true, then many sequences that occur in
combinatorics are p-automatic when reduced modulo pα.
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Constant terms of Laurent polynomials

C(n) is the coefficient of x0 in (1− x)( 1
x + 2 + x)n.

With Zeilberger, we showed how to compute automata for constant
terms modulo pα.

What is the relationship between diagonals of rational power series
and constant terms of P(x)Q(x)n?
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