Column sequences of cellular automata

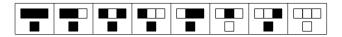
Eric Rowland

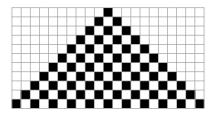
Laboratoire de Combinatoire et d'Informatique Mathématique, Université du Québec à Montréal

October 24, 2012

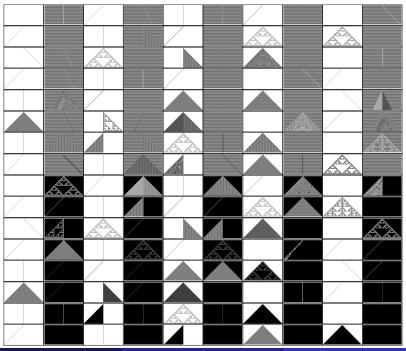
One-dimensional cellular automata

- alphabet Σ of size k (for example $\{0, 1, \dots, k-1\}$)
- function $i : \mathbb{Z} \to \Sigma$ (the initial condition)
- function $f: \Sigma^d \to \Sigma$ (the local update rule)





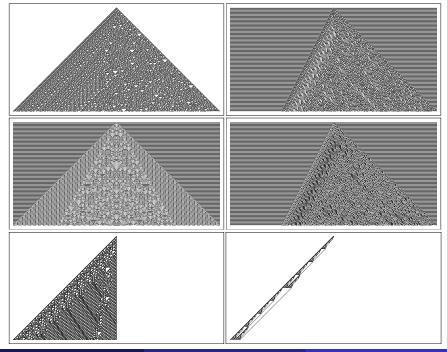
Naming scheme: $11111010_2 = 250$.



Eric Rowland (UQAM)

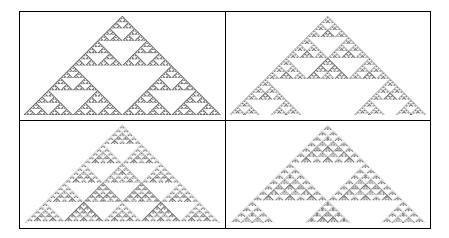
Column sequences of cellular automata

October 24, 2012 4 / 34



Binomial coefficients

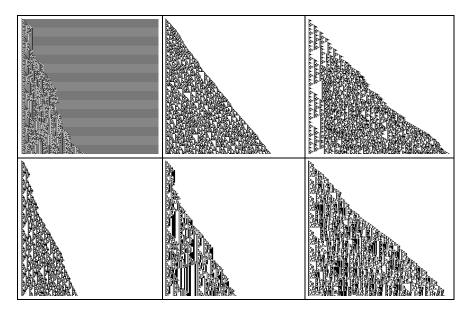
Binomial coefficients modulo k are produced by cellular automata.



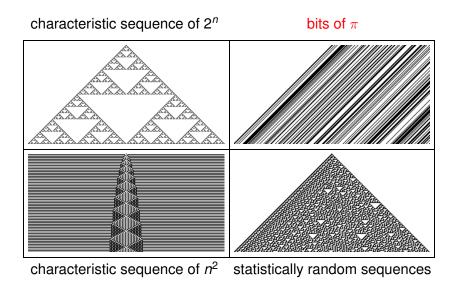
The local rule is f(x, y, z) = x + z modulo k.

Eric Rowland (UQAM)

Boundary growth

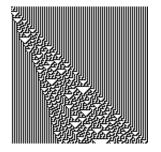


Column sequences



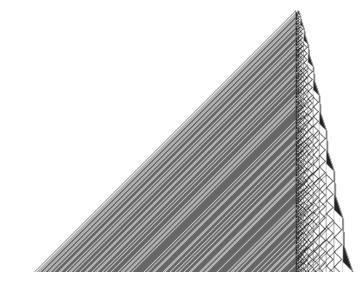
The initial condition is eventually periodic in both directions.

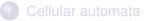
Coarse-graining reduces to constant background.



Characteristic sequence of primes

A 16-color rule depending on 3 cells that computes the primes:





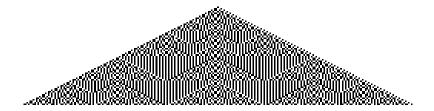
The Thue–Morse sequence

 $T(n) = \begin{cases} 0 & \text{if the binary representation of } n \text{ has an even number of 1s} \\ 1 & \text{if the binary representation of } n \text{ has an odd number of 1s.} \end{cases}$

The Thue–Morse sequence $T(n)_{n\geq 0}$ is

 $01101001100101101001011001101001 \cdots$.

T(n) occurs as a column of this d = 5 automaton:



Thue–Morse fun facts

• A cube is a word of the form *www* where *w* is a nonempty word. The infinite Thue–Morse word is cube-free:

01101001100101101001011001101001 · · ·

• Multigrades:

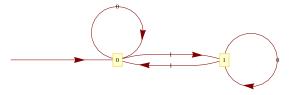
$$\begin{array}{l} 0^{0}+3^{0}+5^{0}+6^{0}=1^{0}+2^{0}+4^{0}+7^{0}=4\\ 0^{1}+3^{1}+5^{1}+6^{1}=1^{1}+2^{1}+4^{1}+7^{1}=14\\ 0^{2}+3^{2}+5^{2}+6^{2}=1^{2}+2^{2}+4^{2}+7^{2}=70\\ \end{array}$$
 general,
$$\begin{array}{l} 2^{\ell-1}(-1)^{T(n)}n^{m}=0 \quad \text{for } 0\leq m\leq \ell-1. \end{array}$$

• Interesting products: $\prod_{n\geq 0} \left(\frac{2n+2}{2n+1}\right)^{(-1)^{T(n)}} = \sqrt{2}$

In

The Thue–Morse sequence is 2-automatic.

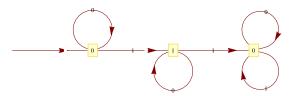
It is computed by a deterministic finite automaton with output in base 2:



A sequence $s(n)_{n\geq 0}$ is *k*-automatic if there is *k*-DFAO whose output is s(n) when fed the base-*k* digits of *n*.

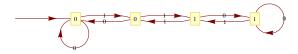
Some 2-automatic sequences

• The characteristic sequence of powers of 2 is 2-automatic:



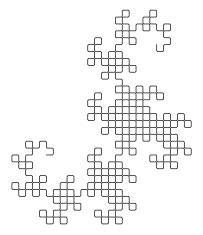
• The Rudin–Shapiro sequence

 $s(n) = \begin{cases} 0 & \text{if the binary representation of } n \text{ has an even number of 11s} \\ 1 & \text{if the binary representation of } n \text{ has an odd number of 11s} \\ \text{is 2-automatic:} \end{cases}$



• The minimal solution to the "infinite" tower of Hanoi puzzle is 2-automatic.

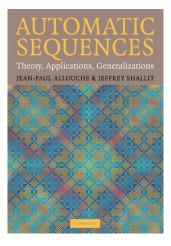
• The sequence of folds in the paperfolding curve is 2-automatic.



Automatic sequences have been very well studied.

Büchi 1960: If s(n) is eventually periodic, then s(n) is k-automatic for every $k \ge 2$.

Several natural generalizations of automatic sequences are known.



Let *p* be a prime. Let \mathbb{F}_q be a finite field of characteristic *p*.

Theorem (Christol et al 1980)

A sequence $s(n)_{n\geq 0}$ of elements in \mathbb{F}_q is *p*-automatic if and only if the formal power series $\sum_{n\geq 0} s(n)t^n$ is algebraic over $F_q(t)$.

The generating function $G(t) = \sum_{n \ge 0} T(n)t^n$ is algebraic over $\mathbb{F}_2(t)$:

$$tG(t) + (1 + t)G(t)^2 + (1 + t^4)G(t)^4 = 0.$$

The assumption $s(n) \in \mathbb{F}_q$ is not restrictive: For a sequence on Σ , any injection $\Sigma \hookrightarrow \mathbb{F}_q$ gives an algebraic series.

A cellular automaton is linear if the local rule $f : \mathbb{F}_q^d \to \mathbb{F}_q$ is \mathbb{F}_q -linear.

For example, the Pascal's triangle modulo *p* cellular automaton with f(x, y, z) = x + z is linear.

Theorem (Litow–Dumas 1993)

Every column of a linear cellular automaton over \mathbb{F}_p is p-automatic.

The proof uses two theorems about formal power series — Christol's theorem and Furstenberg's theorem.

The diagonal of a bivariate series $\sum_{n\geq 0} \sum_{m\geq 0} a(n,m)t^n x^m$ is

$$\sum_{n\geq 0}a(n,n)t^n.$$

Theorem (Furstenberg 1967)

A formal power series G(t) is algebraic over $\mathbb{F}_q(t)$ if and only if G(t) is the diagonal of a rational series F(t, x).

Represent the *n*th row $\cdots a(n, -1) a(n, 0) a(n, 1) \cdots$ by

$$R_n(x) = \cdots + a(n,-1)x^{-1} + a(n,0)x^0 + a(n,1)x^1 + \cdots,$$

which is rational since the initial condition is eventually periodic.

Linearity of the rule means $R_{n+1}(x) = C(x)R_n(x)$ for some C(x). For Pascal's triangle, $C(x) = x + \frac{1}{x}$.

Then the bivariate series $F(t, x) = \sum_{n \ge 0} \sum_{m \in \mathbb{Z}} a(n, m) t^n x^m = \sum_{n \ge 0} R_n(x) t^n = \sum_{n \ge 0} (C(x)t)^n R_0(x)$ is rational.

Column *m* of F(t, x) is the diagonal of $x^{-m}F(tx, x)$, hence it is algebraic (Furstenberg) and hence *p*-automatic (Christol).

We can reverse the proof, using the other directions of Christol's and Furstenberg's theorems.

Issue 1: We may not get a recurrence for $R_n(x)$ of order 1. In general, $C_0(x)R_n(x) = \sum_{i=1}^d C_i(x)R_{n-i}(x)$.

To deal with this, we consider a cellular automaton with memory.

Issue 2: We need $C_0(x)$ to be a (nonzero) monomial so that each $\frac{C_i(x)}{C_0(x)}$ is a Laurent polynomial, so that the update rule is local.

Constructing a Thue–Morse cellular automaton

Christol's theorem gives that $x = \sum_{n \ge 0} T(n)t^n$ satisfies

$$tx + (1+t)x^2 + (1+t^4)x^4 = 0.$$

Replace $x \mapsto 0 + 1t + 1t^2 + t^2x$, and divide by t^3 . Then $G(t) := \sum_{n \ge 0} T(n+3)t^n$ satisfies P(t, G(t)) = 0, where $P(t, x) = (t^2 + t^9) + x + (t + t^2)x^2 + (t^5 + t^9)x^4$.

By Furstenberg's theorem, T(n+2) is the coefficient of x^{-2} in $R_n(x)$:

$$\frac{P_x(t,x)}{P(t,x)} = \frac{1}{x} + t + \left(\frac{1}{x^2} + 1 + x\right)t^2 + \dots = \sum_{n\geq 0}R_n(x)t^n.$$

 $R_n(x)$ satisfies the recurrence

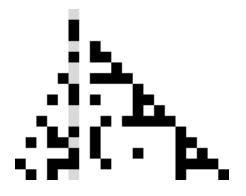
$$R_n(x) = xR_{n-1}(x) + \left(\frac{1}{x} + x\right)R_{n-2}(x) + x^3R_{n-5}(x) + \left(\frac{1}{x} + x^3\right)R_{n-9}(x)$$

for all $n \ge 10$, which determines a linear cellular automaton rule with memory 9.

Restoring initial terms

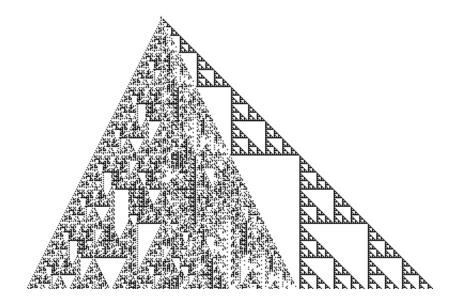
Extend the memory to 9 + 3 = 12 without introducing dependence on the earliest 3 rows.

Then $T(n)_{n\geq 0}$ occurs in Column -2 from initial conditions R_{-2}, \ldots, R_9 .



0110100110010110 ····.

Thue–Morse cellular automaton with memory 12

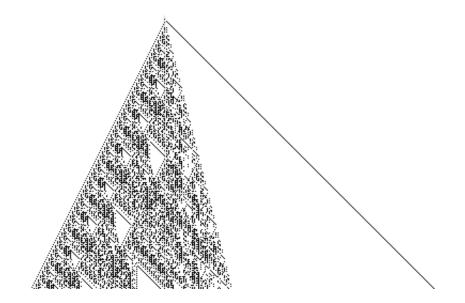


Theorem (Rowland–Yassawi 2012)

Every p-automatic sequence of elements in \mathbb{F}_q occurs as a column of a linear cellular automaton over \mathbb{F}_q with memory whose initial conditions are eventually periodic in both directions.

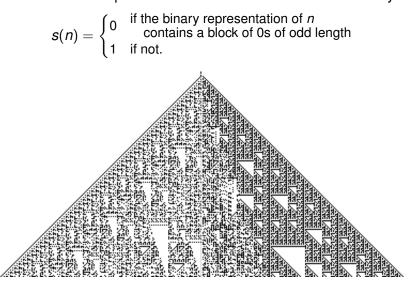
Combined with the Litow–Dumas result, we have a new characterization of p-automatic sequences (for prime p).

Rudin–Shapiro cellular automaton with memory 20



Baum–Sweet cellular automaton with memory 27

The Baum–Sweet sequence 110110010100 ··· is defined by



If we give up linearity, we can get a cellular automaton without memory.

Corollary

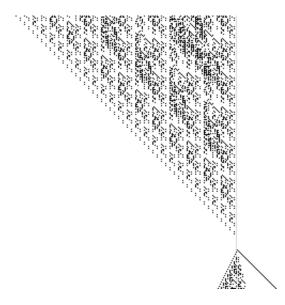
Every p-automatic sequence occurs as a column of a cellular automaton whose initial condition is eventually periodic in both directions. A cellular automaton rule is invertible if it has an inverse rule.

In other words, it can be evolved backward in time as well as forward.

Corollary

If $s(n)_{n\geq 0}$ is a p-automatic sequence, then for some $r \geq 0$ the sequence $s(n)_{n\geq r}$ occurs as a column of an invertible cellular automaton with memory.

Invertible Rudin-Shapiro cellular automaton



Open questions

- Given a *p*-automatic sequence on the alphabet Σ ⊂ F_q, one can find a cellular automaton (without memory) with at most q^{d+r+1} + |Σ| states containing the sequence. Can this bound be improved?
- Does there exist a 3-automatic sequence $s(n)_{n\geq 0}$ on a binary alphabet such that s(n) is not eventually periodic and s(n) occurs as a column of a (nonlinear) 2-state cellular automaton?
- Does every k-automatic sequence occur in a cellular automaton (if k is not prime)?
- Exhibit a sequence that does not occur as the column of a cellular automaton.