Avoiding repetitions in sequences of integers

Eric Rowland

Joint work with Jeff Shallit and Lara Pudwell

Hofstra University

2017 January 20

Eric Rowland

Avoiding repetitions in sequences of integers

2017 January 20 1 / 17

Periodic sequences are simple!

What's a more interesting (but related) class of sequences? We could...

- Maximize simplicity: What are the "simplest" non-periodic sequences?
- Maximize non-periodicity: How "non-periodic" can a sequence be?

A square is a nonempty word of the form ww.

Example: hotshots

Squares on a 2-letter alphabet

Axel Thue (1863-1922)

Are squares avoidable on a 2-letter alphabet? Are there arbitrarily long square-free words on {0,1}?

Choose an order on $\{0, 1\}$ and try to construct one:

010X

Are squares avoidable on $\{0, 1, 2\}$?

01020120210120102012021020102101201020120210...

Theorem (Thue 1906)

There exist arbitrarily long square-free words on 3 letters.

The backtracking algorithm builds the lexicographically least sequence.

Open problem (Allouche–Shallit, Automatic Sequences §1.10)

Characterize the lex. least square-free sequence on $\{0, 1, 2\}$.

Infinite alphabet

On an infinite alphabet, the backtracking algorithm doesn't backtrack.

Are squares avoidable on $\mathbb{Z}_{\geq 0} = \{0, 1, 2, 3, \dots\}$? Yes.

01020103010201040102010301020105 · · ·

Theorem (Guay-Paquet–Shallit 2009)

Let $\varphi(n) = 0$ (n + 1). The lexicographically least square-free sequence on $\mathbb{Z}_{>0}$ is $\varphi^{\infty}(0)$.

$$arphi(0) = 01$$

 $arphi^2(0) = 0102$
 $arphi^3(0) = 01020103$

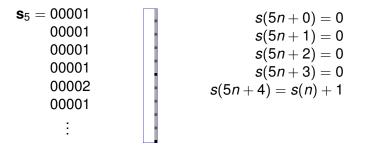
.

 $\varphi^{\infty}(0) = 01020103010201040102010301020105\cdots$

Integer powers

More generally, let $a \ge 2$. Let $\varphi(n) = 0^{a-1}(n+1)$. The lexicographically least *a*-power-free sequence on $\mathbb{Z}_{\ge 0}$ is $\varphi^{\infty}(0)$.

 $\bm{s}_5 = 000010000100001000020000100001\cdots$



 s_5 satisfies a recurrence reflecting the base-5 representation of *n*. Such a sequence is called 5-regular.

Fractional powers

$$\begin{array}{ll} 011101 = (0111)^{3/2} \text{ is a } \frac{3}{2} \text{-power.} & \text{decade} \\ \text{If } |x| = |y| = |z|, \text{ then } xyzxyzx = (xyz)^{7/3} \text{ is a } \frac{7}{3} \text{-power.} & \text{alfalfa} \end{array}$$

Definition

A word w is an $\frac{a}{b}$ -power if

$$w = v^e x$$

where $e \ge 0$ is an integer, x is a prefix of v, and $\frac{|w|}{|v|} = \frac{a}{b}$.

Notation

For $\frac{a}{b} > 1$, let $\mathbf{s}_{a/b}$ be the lex. least $\frac{a}{b}$ -power-free sequence on $\mathbb{Z}_{\geq 0}$.

We assume gcd(a, b) = 1 from now on.

Eric Rowland

Avoiding 3/2-powers

 $\bm{s}_{3/2} = 001102100112001103100113001102100114001103\cdots$

$$s_{3/2} = 001102$$

100112
001103
100113
001102
100114
001103
100112
 $s(6n+5) = s(n) + 2$

Theorem (Rowland–Shallit 2012)

2

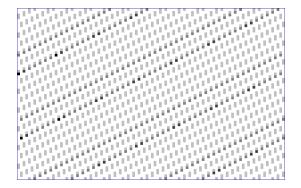
The sequence $\mathbf{s}_{3/2}$ is 6-regular.

Why 6?

Eric Rowland

s_{5/3} wrapped into 100 columns

 $\bm{s}_{5/3} = 00001010000101000010100001020000101\cdots$



s_{5/3} wrapped into 7 columns

 $\bm{s}_{5/3} = 00001010000101000010100001020000101\cdots$

Theorem

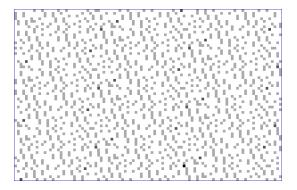
 $\mathbf{s}_{5/3} = \varphi^{\infty}(\mathbf{0})$, where $\varphi(n) = 000010(n+1)$ is a 7-uniform morphism.

Eric Rowland

Avoiding repetitions in sequences of integers

s_{8/5} wrapped into 100 columns

 $\bm{s}_{8/5} = 0000001001000001001000000100110000000100\cdots$



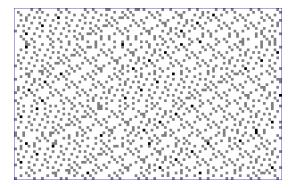
s_{8/5} wrapped into 733 columns

$\bm{s}_{8/5} = 0000001001000001001000000100110000000100\cdots$

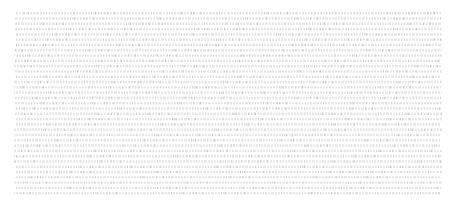
Theorem

${f s}_{8/5}=arphi^\infty(0)$ for the 733-uniform morphism

s_{7/4} wrapped into 100 columns



s_{7/4} wrapped into 50847 columns



Theorem

 $\mathbf{s}_{7/4} = \varphi^{\infty}(\mathbf{0})$ for some 50847-uniform morphism $\varphi(n) = u(n+2)$.

s_{6/5} wrapped into 1001 columns

 $\bm{s}_{6/5} = 000001111102020201011101000202120210110010\cdots$

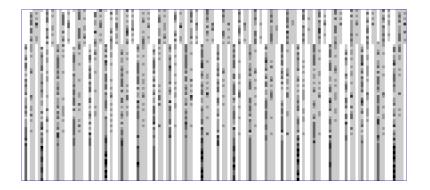
Introduce a new letter 0'. Let $\tau(0') = 0$ and $\tau(n) = n$ for $n \in \mathbb{Z}_{\geq 0}$.

Theorem

There exist words u, v of lengths |u| = 1001 - 1 and |v| = 29949 such that $\mathbf{s}_{6/5} = \tau(\varphi^{\infty}(0'))$, where

$$\varphi(n) = \begin{cases} v \, \varphi(0) & \text{if } n = 0' \\ u \, (n+3) & \text{if } n \ge 0. \end{cases}$$

$\bm{s}_{5/4} = 000011110202101001011212000013110102101302\cdots$



We don't know the structure of $\mathbf{s}_{5/4}$.

Catalogue

For many sequences $\mathbf{s}_{a/b}$, there is a related *k*-uniform morphism. A *k*-uniform morphism generates a *k*-regular sequence.

<u>a</u> b	k
<u>3</u> 2	6
<u>5</u> 3	7
<u>8</u> 5	733
$\frac{7}{4}$	50847
<u>6</u> 5	1001
<u>5</u> 4	?

Question

Is every $\mathbf{s}_{a/b}$ k-regular for some k? How is k related to $\frac{a}{b}$?

Eric Rowland

Avoiding repetitions in sequences of integers