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Catalan numbers modulo 2

What do combinatorial sequences look like modulo pα?

C(n)n≥0 = 1,1,2,5,14,42,132,429, . . .

C(3) = 5

(C(n) mod 2)n≥0 = 1,1,0,1,0,0,0,1,0,0,0,0,0,0,0,1, . . .

Theorem (folklore)
For all n ≥ 0, C(n) is odd if and only if n + 1 is a power of 2.
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Catalan numbers modulo 4 and 8

Theorem (Eu–Liu–Yeh 2008)
For all n ≥ 0,

C(n) mod 4 =


1 if n + 1 = 2a for some a ≥ 0
2 if n + 1 = 2b + 2a for some b > a ≥ 0
0 otherwise.
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Catalan numbers modulo 16

Liu and Yeh (2010) determined C(n) mod 16:

They also determined C(n) mod 64.
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Automatic sequences

C(n) is odd if and only if n + 1 is a power of 2.

This automaton outputs C(n) mod 2 when fed the base-2 digits of n,
starting with the least significant digit.

(C(n) mod 2)n≥0 is 2-automatic.

Let Df denote the diagonal of a multivariate formal power series f .

Theorem (Denef–Lipshitz 1987)
Let α ≥ 1. Let P(x),Q(x) ∈ Zp[x] such that Q(0, . . . ,0) 6≡ 0 mod p.
Then the coefficient sequence of

(
D P(x)

Q(x)

)
mod pα is p-automatic.
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Catalan numbers modulo 4

∑
n≥1

C(n)xn is the diagonal of

y(2xy2 + 2xy − 1)

xy2 + 2xy + x − 1
.

By computing an automaton for a sequence modpα, we can answer. . .

Are there forbidden residues?
What is the limiting distribution of residues (if it exists)?
Is the sequence eventually periodic?
Many other questions known to be decidable.
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Catalan numbers modulo 8 and 16

Theorem (Liu–Yeh)
For all n ≥ 0, C(n) 6≡ 9 mod 16.
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Catalan numbers modulo 2α

Theorem
For all n ≥ 0,

C(n) 6≡ 17,21,26 mod 32,
C(n) 6≡ 10,13,33,37 mod 64,
C(n) 6≡ 18,54,61,65,66,69,98,106,109 mod 128.

Only ≈ 35% of the residues modulo 512 are attained by some C(n).

Open question
Does the density of residues modulo 2α that are attained by some
Catalan number tend to 0 as α gets large?
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Motzkin numbers modulo 8

Theorem (Eu–Liu–Yeh)
For all n ≥ 0, M(n) 6≡ 0 mod 8.

Proof:
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Other combinatorial sequences

Riordan numbers: R(n)n≥0 = 1,0,1,1,3,6,15,36, . . .

Theorem
For all n ≥ 0, R(n) 6≡ 16 mod 32.

Number of directed animals: P(n)n≥0 = 1,1,2,5,13,35,96,267, . . .

Theorem
For all n ≥ 0, P(n) 6≡ 16 mod 32.

Number of restricted hexagonal polyominoes:
H(n)n≥0 = 1,1,3,10,36,137,543,2219, . . .

Theorem
For all n ≥ 0, H(n) 6≡ 0 mod 8.
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Scope

Christol (1990) conjectured that if an integer sequence
is holonomic and
grows at most exponentially,

then it is the diagonal of a rational function.

(n!)n≥0 grows too quickly to be the diagonal of a rational function.

If the conjecture is true, then many sequences that occur in
combinatorics are p-automatic when reduced modulo pα.
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Limiting properties

Open question
Does the density of residues modulo 2α that are attained by some
Catalan number tend to 0 as α gets large?

Can we get information about a sequence in the limit as α→∞?
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Values of C(2n)

C(1) = 1 = 12

C(2) = 2 = 102

C(4) = 14 = 11102

C(8) = 1430 = 101100101102

C(16) = 35357670 = 100001101110000011111001102

Michel, Miller, and Rennie (2014) showed that lim
n→∞

C(2n) exists.
This limit is a 2-adic integer.
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p-adic numbers

Let p be a prime.

Every p-adic integer has a representation d0 + d1p + d2p2 + · · · ,
where di ∈ {0,1, . . . ,p − 1}.

We define the p-adic absolute value | · |p on Q:
Let a,b be nonzero integers not divisible by p. Let k ∈ Z.
Define |ab pk |p := 1

pk and |0|p := 0.

Qp is the completion of Q with respect to | · |p.

Zp := {x ∈ Qp : |x |p ≤ 1}.

In Z2, lim
n→∞

2n = 0.
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Interpolation to Z2?

lim
n→∞

C(2n) exists in Z2.

But we cannot interpolate C(n) to a continuous function C(x) on Z2
because

lim
n→∞

C(2n) 6= 1 = C(0).
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Values of F (3n)

The Fibonacci sequence F (n)n≥0 = 0,1,1,2,3,5,8,13, . . . satisfies

F (n + 2) = F (n + 1) + F (n).

Values of F (32n):

Values of F (32n+1):
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Subtract the limits

Values of F (32n)− limm→∞ F (32m):

Values of F (32n+1)− limm→∞ F (32m+1):
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Divide by 3n

Values of F (32n)−limm→∞ F (32m)
32n :

Values of F (32n+1)−limm→∞ F (32m+1)
32n+1 :

These pictures suggest two 3-adic power series:

If x = 32n, then
F (x) = c0 + c1x + c2x2 + · · · .

If x = 32n+1, then

F (x) = d0 + d1x + d2x2 + · · · .
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Interpolation to R
Let φ = 1+

√
5

2 and φ̄ = 1−
√

5
2 . Then

F (n) =
φn − φ̄n
√

5
.

Since φ is positive,

φn = (exp logφ)n = exp(n logφ).

But φ̄ is negative:

φ̄n = (−1)n(−φ̄)n = (−1)n(exp log(−φ̄))n = cos(πn) exp(n log(−φ̄)).

F (n) is interpolated to R by the analytic function

F (x) =
exp(x logφ)− cos(πx) exp(x log(−φ̄))√

5
.
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Extensions of Qp

It can happen that x2 − x − 1 has no roots in Qp.

Lemma
Let d and e be the degree and ramification index of Qp(

√
5)/Qp.

If p ≡ 2,3 mod 5, then
√

5 /∈ Qp and d = 2 and e = 1.
If p = 5, then

√
5 /∈ Q5 and d = e = 2.

If p ≡ 1,4 mod 5, then
√

5 ∈ Qp, so d = e = 1.

For p = 2, p = 5, and p = 11:

f := d/e will turn out to be the number of limit points.
Eric Rowland Arithmetic properties of some combinatorial sequences 2016 February 11 20 / 31



p-adic logarithm and exponential

The p-adic logarithm

logp x :=
∑
m≥1

(−1)m+1 (x − 1)m

m

converges for x ∈ Zp such that |x − 1|p < 1.

The p-adic exponential function

expp x :=
∑
m≥0

xm

m!

converges for x ∈ Zp such that |x |p < p−1/(p−1).

If |x − 1|p < p−1/(p−1), then

x = expp logp x .
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Roots of unity

We may need to divide by a root of unity in Zp. Let f = d/e.

Proposition

Let p 6= 2. For each β ∈ Qp(
√

5) such that |β|p ≤ 1, there exists a
(pf − 1)-st root of unity ω(β) such that | β

ω(β) − 1|p < p−1/(p−1).

Let φ be a root of x2 − x − 1; then |φ|p = 1, and we have

φn = ω(φ)n
(

φ
ω(φ)

)n
= ω(φ)n

(
expp logp

(
φ

ω(φ)

)n
)

= ω(φ)n expp

(
n logp

(
φ

ω(φ)

))
.

For n in a fixed residue class modulo pf − 1, ω(φ)n is constant.
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Twisted interpolation for the Fibonacci sequence

Let φ = 1+
√

5
2 and φ̄ = 1−

√
5

2 in Qp(
√

5).

Theorem
Let p 6= 2 be a prime, and let 0 ≤ i ≤ pf − 2.
Define the function Fi : Zp → Zp by

Fi(x) =
ω(φ)i expp

(
x logp

φ
ω(φ)

)
− ω(φ̄)i expp

(
x logp

φ̄
ω(φ̄)

)
√

5

=
∑
m≥0

(
ω(φ)i − (−1)mω(φ̄)i) (logp

φ
ω(φ)

)m

m!
√

5
xm.

Then F (n) = Fi(n) for all n ≡ i mod pf − 1 and 0 ≤ i ≤ pf − 2.

Since Ai := {n ≥ 0 : n ≡ i mod pf − 1} is dense in Zp,
Fi(x) is the unique continuous function that agrees with F (n) on Ai .
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p = 5

ω(φ) = ω(φ̄) = ω(3), so all the Fi(n) are equal up to a factor of ω(3)n.

Corollary
F (n)/ω(3)n can be extended to an analytic function on Z5, namely

2√
5

sinh5

(
x log5

φ
ω(3)

)
.

sinhp(x) :=
expp(x)− expp(−x)

2
=
∑
m≥0

1
(2m + 1)!

x2m+1

In particular, limn→∞ F (5n) = 0.
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Limits of F (pn)

For a,b ∈ Z, we have

lim
n→∞

F (apfn + b) =
ω(φ)aφb − ω(φ̄)aφ̄b

√
5

.

In Z3, lim
n→∞

F (32n) and lim
n→∞

F (32n+1) are equal to ±
√

2
5 .

In Z2, lim
n→∞

F (22n) and lim
n→∞

F (22n+1) are equal to ±
√
−3

5 .

In Z11, lim
n→∞

F (11n) is a root of 5x2 + 5x + 1.
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Limiting density of attained residues

Burr (1971) characterized the integers m such that (F (n) mod m)n≥0
contains all residue classes modulo m.

In particular, F (n)n≥0 attains all residues modulo 3α and 5α.

Does the limit
lim
α→∞

|{F (n) mod pα : n ≥ 0}|
pα

exist for other primes?
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Fibonacci residues modulo 11α

0 1 2 3 5 8 10

0

0 4 5 6 8 9

6

3 4 5 7 8 10

0

0

0 1 2 3
5

8 10

5

5 489 610 731 973
1094

9080

53003 67644 82285 111567
126208

155490

126208
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Fibonacci residues modulo 11α

Let µ be the Haar measure on Zp defined by µ(m + pαZp) = p−α.

Theorem
The limiting density of residues attained by the Fibonacci sequence
modulo 11α is

lim
α→∞

|{F (n) mod 11α : n ≥ 0}|
11α

= µ

(
9⋃

i=0

Fi(Z11)

)
=

145
264

.

The twisted interpolation of F (n) to Z11 consists of 10 functions
F0, . . . ,F9.
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General constant-recursive sequence

Let s(n)n≥0 be a sequence of p-adic integers satisfying a linear
recurrence

s(n + `) + a`−1s(n + `− 1) + · · ·+ a1s(n + 1) + a0s(n) = 0

with constant coefficients ai ∈ Zp.

We can write
s(n) =

∑
β

cβ(n)βn

for some polynomials cβ(x) ∈ K [x ], where β runs over the roots of the
characteristic polynomial x` + · · ·+ a1x + a0.
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General constant-recursive sequence

Theorem
Let p be a prime, and let s(n)n≥0 be a constant-recursive sequence of
p-adic integers with monic characteristic polynomial ∈ Zp[x ]. Then
s(n)n≥0 has an approximate twisted interpolation to Zp. That is, there
exists q a power of p, a finite partition N =

⋃
j∈J Aj with each Aj dense

in r + qZp for some 0 ≤ r ≤ q − 1, finitely many continuous functions
sj : Zp → K , and non-negative constants C,D with D < 1 such that

|s(n)− sj(n)|p ≤ C · Dn

for all n ∈ Aj and j ∈ J.

Example
Let s(n + 2) = 2s(n) and s(0) = s(1) = 1. The roots of the
characteristic polynomial are ±

√
2. For p = 2, the constants C,D are

nonzero, since
√

2 is a uniformizer of Q2(
√

2)/Q2.
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Applications

Theorem
Let a,b ∈ Z with a ≥ 1. Then

lim
n→∞

s(apfn + b) =
∑
|β|p=1

cβ(b)ω(β)aβb

In particular, the value of this limit is algebraic over Qp.

Theorem
Let s(n)n≥0 be a sequence of p-adic integers with an approximate
twisted interpolation {(si,r ,Ai,r ) : 0 ≤ i ≤ pf − 2 and 0 ≤ r ≤ q − 1}.
Then

lim
α→∞

|{s(n) mod pα : n ≥ 0}|
pα

= µ

Zp ∩
⋃
i,r

si,r (r + qZp)

 .
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