Arithmetic properties of some combinatorial sequences

Eric Rowland Reem Yassawi

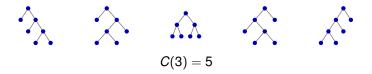
2016 February 11

Arithmetic properties of some combinatorial sequences

Catalan numbers modulo 2

What do combinatorial sequences look like modulo p^{α} ?

 $C(n)_{n\geq 0} = 1, 1, 2, 5, 14, 42, 132, 429, \ldots$



 $(C(n) \mod 2)_{n \ge 0} = 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, \dots$

Theorem (folklore)

For all $n \ge 0$, C(n) is odd if and only if n + 1 is a power of 2.

Eric Rowland

Arithmetic properties of some combinatorial sequences

Theorem (Eu–Liu–Yeh 2008)

For all $n \ge 0$,

$$C(n) \mod 4 = \begin{cases} 1 & \text{if } n+1=2^a \text{ for some } a \ge 0\\ 2 & \text{if } n+1=2^b+2^a \text{ for some } b > a \ge 0\\ 0 & \text{otherwise.} \end{cases}$$

Theorem 4.2. Let C_n be the nth Catalan number. First of all, $C_n \neq_8 3$ and $C_n \neq_8 7$ for any n. As for other congruences, we have

$$C_n \equiv_8 \begin{cases} 1 & \text{if } n = 0 \text{ or } 1; \\ 2 & \text{if } n = 2^a + 2^{a+1} - 1 \text{ for some } a \ge 0; \\ 4 & \text{if } n = 2^a + 2^b + 2^c - 1 \text{ for some } c > b > a \ge 0; \\ 5 & \text{if } n = 2^a - 1 \text{ for some } a \ge 2; \\ 6 & \text{if } n = 2^a + 2^b - 1 \text{ for some } b - 2 \ge a \ge 0; \\ 0 & \text{otherwise.} \end{cases}$$

Catalan numbers modulo 16

Liu and Yeh (2010) determined $C(n) \mod 16$:

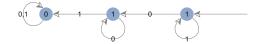
Theorem 5.5. Let c_n be the n-th Catalan number. First of all, $c_n \not\equiv_{16} 3, 7, 9, 11, 15$ for any n. As for the other congruences, we have

They also determined $C(n) \mod 64$.

Eric Rowland

Automatic sequences

C(n) is odd if and only if n + 1 is a power of 2.



This automaton outputs $C(n) \mod 2$ when fed the base-2 digits of n, starting with the least significant digit.

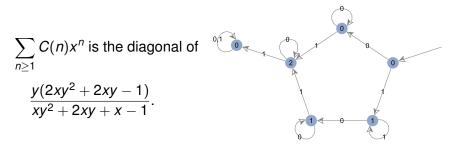
 $(C(n) \mod 2)_{n \ge 0}$ is 2-automatic.

Let $\mathcal{D}f$ denote the diagonal of a multivariate formal power series f.

Theorem (Denef–Lipshitz 1987)

Let $\alpha \geq 1$. Let $P(\mathbf{x}), Q(\mathbf{x}) \in \mathbb{Z}_p[\mathbf{x}]$ such that $Q(0, \dots, 0) \not\equiv 0 \mod p$. Then the coefficient sequence of $\left(\mathcal{D} \frac{P(\mathbf{x})}{Q(\mathbf{x})}\right) \mod p^{\alpha}$ is p-automatic.

Catalan numbers modulo 4



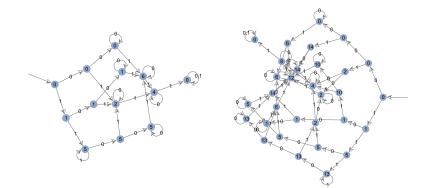
By computing an automaton for a sequence $mod p^{\alpha}$, we can answer...

- Are there forbidden residues?
- What is the limiting distribution of residues (if it exists)?
- Is the sequence eventually periodic?
- Many other questions known to be decidable.

Catalan numbers modulo 8 and 16

Theorem (Liu–Yeh)

For all $n \ge 0$, $C(n) \ne 9 \mod 16$.



Theorem

For all $n \ge 0$,

- $C(n) \neq 17, 21, 26 \mod 32$,
- $C(n) \neq 10, 13, 33, 37 \mod 64$,
- $C(n) \neq 18, 54, 61, 65, 66, 69, 98, 106, 109 \mod 128$.

Only \approx 35% of the residues modulo 512 are attained by some *C*(*n*).

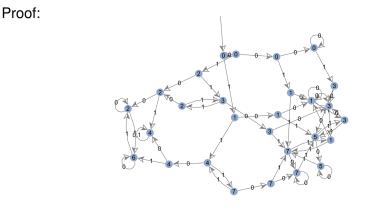
Open question

Does the density of residues modulo 2^{α} that are attained by some Catalan number tend to 0 as α gets large?

Motzkin numbers modulo 8

Theorem (Eu–Liu–Yeh)

For all $n \ge 0$, $M(n) \not\equiv 0 \mod 8$.



9/31

Other combinatorial sequences

Riordan numbers: $R(n)_{n\geq 0} = 1, 0, 1, 1, 3, 6, 15, 36, \dots$

Theorem

For all $n \ge 0$, $R(n) \not\equiv 16 \mod 32$.

Number of directed animals: $P(n)_{n\geq 0} = 1, 1, 2, 5, 13, 35, 96, 267, \dots$

Theorem

For all $n \ge 0$, $P(n) \not\equiv 16 \mod 32$.

Number of restricted hexagonal polyominoes: $H(n)_{n\geq 0} = 1, 1, 3, 10, 36, 137, 543, 2219, ...$

Theorem

For all $n \ge 0$, $H(n) \not\equiv 0 \mod 8$.

Christol (1990) conjectured that if an integer sequence

- is holonomic and
- grows at most exponentially,

then it is the diagonal of a rational function.

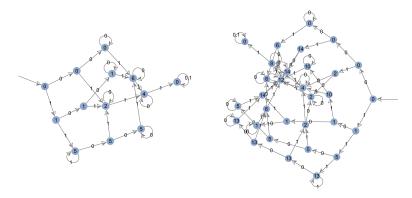
 $(n!)_{n\geq 0}$ grows too quickly to be the diagonal of a rational function.

If the conjecture is true, then many sequences that occur in combinatorics are *p*-automatic when reduced modulo p^{α} .

Limiting properties

Open question

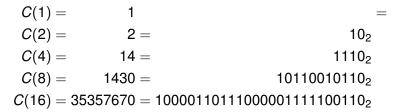
Does the density of residues modulo 2^{α} that are attained by some Catalan number tend to 0 as α gets large?



Can we get information about a sequence in the limit as $\alpha \to \infty$?

Eric Rowland

Values of $C(2^n)$



Michel, Miller, and Rennie (2014) showed that $\lim_{n\to\infty} C(2^n)$ exists. This limit is a 2-adic integer.

Eric Rowland

Let p be a prime.

Every *p*-adic integer has a representation $d_0 + d_1p + d_2p^2 + \cdots$, where $d_i \in \{0, 1, \dots, p-1\}$.

We define the *p*-adic absolute value $|\cdot|_p$ on \mathbb{Q} : Let *a*, *b* be nonzero integers not divisible by *p*. Let $k \in \mathbb{Z}$. Define $|\frac{a}{b}p^k|_p := \frac{1}{p^k}$ and $|0|_p := 0$.

 \mathbb{Q}_p is the completion of \mathbb{Q} with respect to $|\cdot|_p$.

$$\mathbb{Z}_{p} := \{ x \in \mathbb{Q}_{p} : |x|_{p} \leq 1 \}.$$

In \mathbb{Z}_2 , $\lim_{n\to\infty} 2^n = 0$.

 $\lim_{n\to\infty} C(2^n) \text{ exists in } \mathbb{Z}_2.$

But we cannot interpolate C(n) to a continuous function C(x) on \mathbb{Z}_2 because

$$\lim_{n\to\infty}C(2^n)\neq 1=C(0).$$

The Fibonacci sequence $F(n)_{n\geq 0} = 0, 1, 1, 2, 3, 5, 8, 13, ...$ satisfies

$$F(n+2) = F(n+1) + F(n).$$

Values of $F(3^{2n})$:

nerestante autore autore and a second and a second a seco

Values of $F(3^{2n+1})$:

Eric Rowland

Subtract the limits

Values of $F(3^{2n}) - \lim_{m \to \infty} F(3^{2m})$:

Values of $F(3^{2n+1}) - \lim_{m \to \infty} F(3^{2m+1})$:

。 1997年1月1日(1997年),1997年1月1日,1月1日(1997年)。 1997年1月1日(1997年),1997年1月1日(1997年)。

Arithmetic properties of some combinatorial sequences 2016 February 11 17/31

Divide by 3ⁿ

Values of
$$\frac{F(3^{2n})-\lim_{m\to\infty}F(3^{2m})}{3^{2n}}$$
:

Values of $\frac{F(3^{2n+1}) - \lim_{m \to \infty} F(3^{2m+1})}{3^{2n+1}}$:

These pictures suggest two 3-adic power series:

If $x = 3^{2n}$, then

$$F(x)=c_0+c_1x+c_2x^2+\cdots$$

If $x = 3^{2n+1}$, then

$$F(x)=d_0+d_1x+d_2x^2+\cdots$$

Interpolation to \mathbb{R}

Let
$$\phi = \frac{1+\sqrt{5}}{2}$$
 and $\bar{\phi} = \frac{1-\sqrt{5}}{2}$. Then
 $F(n) = \frac{\phi^n - \bar{\phi}^n}{\sqrt{5}}.$

Since ϕ is positive,

$$\phi^n = (\exp\log\phi)^n = \exp(n\log\phi).$$

But $\overline{\phi}$ is negative:

$$\bar{\phi}^n = (-1)^n (-\bar{\phi})^n = (-1)^n (\exp\log(-\bar{\phi}))^n = \cos(\pi n) \exp(n\log(-\bar{\phi})).$$

F(n) is interpolated to \mathbb{R} by the analytic function

$$F(x) = \frac{\exp(x\log\phi) - \cos(\pi x)\exp(x\log(-\bar{\phi}))}{\sqrt{5}}$$

19/31

Extensions of \mathbb{Q}_p

It can happen that $x^2 - x - 1$ has no roots in \mathbb{Q}_p .

Lemma

Let d and e be the degree and ramification index of $\mathbb{Q}_p(\sqrt{5})/\mathbb{Q}_p$.

- If $p \equiv 2,3 \mod 5$, then $\sqrt{5} \notin \mathbb{Q}_p$ and d = 2 and e = 1.
- If p = 5, then $\sqrt{5} \notin \mathbb{Q}_5$ and d = e = 2.
- If $p \equiv 1, 4 \mod 5$, then $\sqrt{5} \in \mathbb{Q}_p$, so d = e = 1.

For p = 2, p = 5, and p = 11:

f := d/e will turn out to be the number of limit points.

Eric Rowland

Arithmetic properties of some combinatorial sequences

p-adic logarithm and exponential

The *p*-adic logarithm

$$\log_{p} x := \sum_{m \ge 1} (-1)^{m+1} \frac{(x-1)^{m}}{m}$$

converges for $x \in \mathbb{Z}_p$ such that $|x - 1|_p < 1$.

The *p*-adic exponential function

$$\exp_p x := \sum_{m \ge 0} \frac{x^m}{m!}$$

converges for $x \in \mathbb{Z}_p$ such that $|x|_p < p^{-1/(p-1)}$.

If $|x - 1|_p < p^{-1/(p-1)}$, then

$$x = \exp_p \log_p x.$$

21/31

Roots of unity

We may need to divide by a root of unity in \mathbb{Z}_{p} . Let f = d/e.

Proposition

Let $p \neq 2$. For each $\beta \in \mathbb{Q}_p(\sqrt{5})$ such that $|\beta|_p \leq 1$, there exists a $(p^f - 1)$ -st root of unity $\omega(\beta)$ such that $|\frac{\beta}{\omega(\beta)} - 1|_p < p^{-1/(p-1)}$.

Let ϕ be a root of $x^2 - x - 1$; then $|\phi|_{\rho} = 1$, and we have

$$\phi^{n} = \omega(\phi)^{n} \left(\frac{\phi}{\omega(\phi)}\right)^{n} = \omega(\phi)^{n} \left(\exp_{\rho} \log_{\rho} \left(\frac{\phi}{\omega(\phi)}\right)^{n}\right)$$
$$= \omega(\phi)^{n} \exp_{\rho} \left(n \log_{\rho} \left(\frac{\phi}{\omega(\phi)}\right)\right).$$

For *n* in a fixed residue class modulo $p^{f} - 1$, $\omega(\phi)^{n}$ is constant.

Twisted interpolation for the Fibonacci sequence

Let
$$\phi = \frac{1+\sqrt{5}}{2}$$
 and $\bar{\phi} = \frac{1-\sqrt{5}}{2}$ in $\mathbb{Q}_p(\sqrt{5})$.

Theorem

Let $p \neq 2$ be a prime, and let $0 \leq i \leq p^f - 2$. Define the function $F_i : \mathbb{Z}_p \to \mathbb{Z}_p$ by

$$F_{i}(x) = \frac{\omega(\phi)^{i} \exp_{\rho} \left(x \log_{\rho} \frac{\phi}{\omega(\phi)} \right) - \omega(\bar{\phi})^{i} \exp_{\rho} \left(x \log_{\rho} \frac{\bar{\phi}}{\omega(\bar{\phi})} \right)}{\sqrt{5}}$$
$$= \sum_{m \ge 0} \frac{\left(\omega(\phi)^{i} - (-1)^{m} \omega(\bar{\phi})^{i} \right) \left(\log_{\rho} \frac{\phi}{\omega(\phi)} \right)^{m}}{m! \sqrt{5}} x^{m}.$$

Then $F(n) = F_i(n)$ for all $n \equiv i \mod p^f - 1$ and $0 \le i \le p^f - 2$.

Since $A_i := \{n \ge 0 : n \equiv i \mod p^f - 1\}$ is dense in \mathbb{Z}_p , $F_i(x)$ is the unique continuous function that agrees with F(n) on A_i .

Eric Rowland

 $\omega(\phi) = \omega(\bar{\phi}) = \omega(3)$, so all the $F_i(n)$ are equal up to a factor of $\omega(3)^n$.

Corollary

 $F(n)/\omega(3)^n$ can be extended to an analytic function on \mathbb{Z}_5 , namely

$$\frac{2}{\sqrt{5}}\sinh_5\left(x\log_5\frac{\phi}{\omega(3)}\right)$$
 .

$$\sinh_p(x) := rac{\exp_p(x) - \exp_p(-x)}{2} = \sum_{m \ge 0} rac{1}{(2m+1)!} x^{2m+1}$$

In particular, $\lim_{n\to\infty} F(5^n) = 0$.

Limits of $F(p^n)$

For $a, b \in \mathbb{Z}$, we have

$$\lim_{n \to \infty} F(ap^{fn} + b) = \frac{\omega(\phi)^a \phi^b - \omega(\bar{\phi})^a \bar{\phi}^b}{\sqrt{5}}.$$

In \mathbb{Z}_3 , $\lim_{n \to \infty} F(3^{2n})$ and $\lim_{n \to \infty} F(3^{2n+1})$ are equal to $\pm \sqrt{\frac{2}{5}}.$

In \mathbb{Z}_2 , $\lim_{n\to\infty} F(2^{2n})$ and $\lim_{n\to\infty} F(2^{2n+1})$ are equal to $\pm \sqrt{-\frac{3}{5}}$.

In \mathbb{Z}_{11} , $\lim_{n\to\infty} F(11^n)$ is a root of $5x^2 + 5x + 1$.

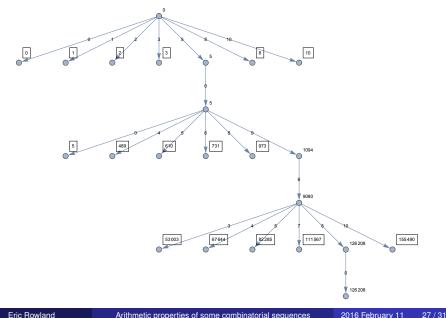
Burr (1971) characterized the integers *m* such that $(F(n) \mod m)_{n \ge 0}$ contains all residue classes modulo *m*.

In particular, $F(n)_{n\geq 0}$ attains all residues modulo 3^{α} and 5^{α} .

Does the limit
$$\lim_{lpha
ightarrow\infty}rac{|\{F(n) ext{ mod } p^lpha:n\geq 0\}}{p^lpha}$$

exist for other primes?

Fibonacci residues modulo 11^{α}



Eric Rowland

Arithmetic properties of some combinatorial sequences 2016 February 11 Let μ be the Haar measure on \mathbb{Z}_{ρ} defined by $\mu(m + \rho^{\alpha}\mathbb{Z}_{\rho}) = \rho^{-\alpha}$.

Theorem

The limiting density of residues attained by the Fibonacci sequence modulo 11^{α} is

$$\lim_{\alpha\to\infty}\frac{|\{F(n) \bmod 11^{\alpha}:n\geq 0\}|}{11^{\alpha}}=\mu\left(\bigcup_{i=0}^{9}F_i(\mathbb{Z}_{11})\right)=\frac{145}{264}.$$

The twisted interpolation of F(n) to \mathbb{Z}_{11} consists of 10 functions F_0, \ldots, F_9 .

Let $s(n)_{n\geq 0}$ be a sequence of *p*-adic integers satisfying a linear recurrence

$$s(n + \ell) + a_{\ell-1}s(n + \ell - 1) + \dots + a_1s(n + 1) + a_0s(n) = 0$$

with constant coefficients $a_i \in \mathbb{Z}_p$.

We can write

$$s(n) = \sum_eta c_eta(n) eta^n$$

for some polynomials $c_{\beta}(x) \in K[x]$, where β runs over the roots of the characteristic polynomial $x^{\ell} + \cdots + a_1 x + a_0$.

Theorem

Let p be a prime, and let $s(n)_{n\geq 0}$ be a constant-recursive sequence of p-adic integers with monic characteristic polynomial $\in \mathbb{Z}_p[x]$. Then $s(n)_{n\geq 0}$ has an approximate twisted interpolation to \mathbb{Z}_p . That is, there exists q a power of p, a finite partition $\mathbb{N} = \bigcup_{j\in J} A_j$ with each A_j dense in $r + q\mathbb{Z}_p$ for some $0 \le r \le q - 1$, finitely many continuous functions $s_j : \mathbb{Z}_p \to K$, and non-negative constants C, D with D < 1 such that

$$|s(n) - s_j(n)|_p \leq C \cdot D^n$$

for all $n \in A_j$ and $j \in J$.

Example

Let s(n+2) = 2s(n) and s(0) = s(1) = 1. The roots of the characteristic polynomial are $\pm\sqrt{2}$. For p = 2, the constants *C*, *D* are nonzero, since $\sqrt{2}$ is a uniformizer of $\mathbb{Q}_2(\sqrt{2})/\mathbb{Q}_2$.

Eric Rowland

Applications

Theorem

Let $a, b \in \mathbb{Z}$ with $a \ge 1$. Then

$$\lim_{b o\infty} s(ap^{\mathit{fn}}+b) = \sum_{|eta|_{m{p}}=1} c_{eta}(b) \omega(eta)^{a} eta^{b}$$

In particular, the value of this limit is algebraic over \mathbb{Q}_p .

Theorem

Let $s(n)_{n\geq 0}$ be a sequence of p-adic integers with an approximate twisted interpolation $\{(s_{i,r}, A_{i,r}) : 0 \leq i \leq p^f - 2 \text{ and } 0 \leq r \leq q - 1\}$. Then

$$\lim_{\alpha \to \infty} \frac{|\{s(n) \bmod p^{\alpha} : n \ge 0\}|}{p^{\alpha}} = \mu \left(\mathbb{Z}_p \cap \bigcup_{i,r} s_{i,r}(r+q\mathbb{Z}_p) \right)$$