A new characterization of *p*-automatic sequences

Eric Rowland¹ Reem Yassawi²

¹Université du Québec à Montréal

²Trent University

2013 April 26

k-automatic sequences

A sequence $s(n)_{n\geq 0}$ is *k*-automatic if there is DFAO whose output is s(n) when fed the base-*k* digits of *n*.

```
The Thue–Morse sequence T(n)_{n\geq 0}
```

 $01101001100101101001011001101001 \cdots$.

is 2-automatic:

Let *p* be a prime. Let \mathbb{F}_q be a finite field of characteristic *p*.

Theorem (Christol–Kamae–Mendès France–Rauzy 1980)

A sequence $s(n)_{n\geq 0}$ of elements in \mathbb{F}_q is *p*-automatic if and only if the formal power series $\sum_{n\geq 0} s(n)t^n$ is algebraic over $\mathbb{F}_q(t)$.

For Thue–Morse,
$$G(t) = \sum_{n \ge 0} T(n)t^n$$
 over $\mathbb{F}_2(t)$ satisfies

$$tG(t) + (1 + t)G(t)^2 + (1 + t^4)G(t)^4 = 0.$$

One-dimensional cellular automata

- finite alphabet Σ (for example $\{\Box, \blacksquare\}$)
- function $i : \mathbb{Z} \to \Sigma$ (the initial condition)
- integer $\ell \geq 0$
- function $f: \Sigma^{\ell} \to \Sigma$ (the local update rule)

Binomial coefficients

Binomial coefficients modulo k are produced by cellular automata.

The local rule is f(u, v, w) = u + w modulo k.

Eric Rowland (UQAM)

New characterization *p*-automatic sequences

A cellular automaton is linear if the local rule $f : \mathbb{F}_q^{\ell} \to \mathbb{F}_q$ is \mathbb{F}_q -linear.

For example, f(u, v, w) = u + w for binomial coefficients modulo p.

Theorem (Litow–Dumas 1993)

Every column of a linear cellular automaton over \mathbb{F}_p is p-automatic.

The proof uses two theorems about formal power series — Christol's theorem and a theorem of Furstenberg.

The diagonal of a bivariate series $\sum_{n\geq 0} \sum_{m\geq 0} a(n,m)t^n x^m$ is

$$\sum_{n\geq 0}a(n,n)t^n.$$

Theorem (Furstenberg 1967)

A formal power series G(t) is algebraic over $\mathbb{F}_q(t)$ if and only if G(t) is the diagonal of a bivariate rational series F(t, x).

Sketch of Litow–Dumas proof

Every column of a linear cellular automaton over \mathbb{F}_p is p-automatic.

Represent the *n*th row $\cdots a(n, -1) a(n, 0) a(n, 1) \cdots$ by

$$R_n(x) = \cdots + a(n,-1)x^{-1} + a(n,0)x^0 + a(n,1)x^1 + \cdots,$$

which is rational since the initial condition is eventually periodic.

Linearity of the rule means $R_{n+1}(x) = C(x)R_n(x)$ for some C(x). For binomial coefficients, $C(x) = x + \frac{1}{x}$.

Then the bivariate series $F(t, x) = \sum_{n \ge 0} \sum_{m \in \mathbb{Z}} a(n, m) t^n x^m = \sum_{n \ge 0} R_n(x) t^n = \sum_{n \ge 0} (C(x)t)^n R_0(x)$ is rational.

Column *m* of F(t, x) is the diagonal of $x^{-m}F(tx, x)$, hence it is algebraic (Furstenberg) and hence *p*-automatic (Christol).

Given a *p*-automatic sequence, can we compute a cellular automaton?

Reverse the proof: Christol produces a polynomial equation. Furstenberg produces a bivariate rational series. The denominator encodes a linear rule.

Issue 1: In general, the recurrence $C_0(x)R_n(x) = \sum_{i=1}^d C_i(x)R_{n-i}(x)$ will not have order 1.

To deal with this, we introduce memory into the cellular automaton.

Issue 2: We need $C_0(x)$ to be a (nonzero) monomial so that each $\frac{C_i(x)}{C_0(x)}$ is a Laurent polynomial, so that the update rule is local.

Thue–Morse cellular automaton with memory 12

Thue–Morse cellular automaton with memory 12

Eric Rowland (UQAM)

Combined with the Litow–Dumas result, we have the following characterization of p-automatic sequences (for prime p).

Theorem

A sequence of elements in \mathbb{F}_q is *p*-automatic if and only if it occurs as a column of a linear cellular automaton over \mathbb{F}_q with memory whose initial conditions are eventually periodic in both directions.

Rudin–Shapiro cellular automaton with memory 20

Baum–Sweet cellular automaton with memory 27

The Baum–Sweet sequence 110110010100 ··· is defined by

