A new characterization of *p*-automatic sequences

Eric Rowland, joint work with Reem Yassawi

2013 April 5

Old characterizations of automatic sequences

3 Automatic sequences and cellular automata

The Thue–Morse sequence

 $T(n) = \begin{cases} 0 & \text{if the binary representation of } n \text{ has an even number of 1s} \\ 1 & \text{if the binary representation of } n \text{ has an odd number of 1s.} \end{cases}$

The Thue–Morse sequence $T(n)_{n\geq 0}$ is

01101001100101101001011001101001....

The Thue–Morse sequence is 2-automatic.

It is computed by a deterministic finite automaton with output in base 2:

A sequence $s(n)_{n\geq 0}$ is *k*-automatic if there is DFAO whose output is s(n) when fed the base-*k* digits of *n*, from least to most significant.

Eric Rowland

Tower of Hanoi

The sequence's alphabet is not necessarily the digits $\{0, 1, \ldots, k\}$.

The optimal solution

acbacbacbacbacbacbacbacbacbacbac

to the "infinite" tower of Hanoi puzzle is 2-automatic.

Tower of Hanoi automata

An automaton:

An automaton that reads the most significant digit first:

Thue–Morse arises in ...

• Combinatorics on words:

An overlap is a word *awawa* where w is a word and a is a letter. The Thue–Morse word 011010011001010... is overlap-free.

• Multigrades:

In

$$\begin{array}{l} 0^{0}+3^{0}+5^{0}+6^{0}=1^{0}+2^{0}+4^{0}+7^{0}=4\\ 0^{1}+3^{1}+5^{1}+6^{1}=1^{1}+2^{1}+4^{1}+7^{1}=14\\ 0^{2}+3^{2}+5^{2}+6^{2}=1^{2}+2^{2}+4^{2}+7^{2}=70\\ \end{array}$$
general,
$$\sum_{n=0}^{2^{\ell}-1}(-1)^{T(n)}n^{m}=0 \quad \text{for } 0\leq m\leq \ell-1. \end{array}$$

Interesting products:

$$\prod_{n\geq 0} (n+1)^{(-1)^{T(n)}} = \frac{1\cdot 4\cdot 6\cdot 7\cdot 10\cdot 11\cdot 13\cdot 16\cdots}{2\cdot 3\cdot 5\cdot 8\cdot 9\cdot 12\cdot 14\cdot 15\cdots} = \frac{1}{\sqrt{2}}$$

More 2-automatic sequences

• The characteristic sequence of powers of 2 is 2-automatic:

• The Rudin–Shapiro sequence

 $s(n) = \begin{cases} 0 & \text{if the binary representation of } n \text{ has an even number of 11s} \\ 1 & \text{if the binary representation of } n \text{ has an odd number of 11s} \\ \text{is 2-automatic:} \end{cases}$

The sequence of turns in the paperfolding curve is 2-automatic.

Characterization as a fixed point

Several characterizations of automatic sequences are known.

Theorem (Cobham 1972)

A sequence is k-automatic if and only if it is the image, under a coding, of a fixed point of a k-uniform morphism.

Thue–Morse: $\varphi(0) = 01, \varphi(1) = 10$; then $\varphi^{\omega}(0) = 01101001 \cdots$.

Rudin–Shapiro: $\varphi(a) = ab, \varphi(b) = ac, \varphi(c) = db, \varphi(d) = dc;$ $\tau(a) = \tau(b) = 0, \tau(c) = \tau(d) = 1.$

> $\varphi^{\omega}(a) = abacabdbabacdcacabacabdbdcdbabdb \cdots$ $\tau(\varphi^{\omega}(a)) = 0001001000011101000101011100010 \cdots$

Theorem (Eilenberg 1974)

A sequence $s(n)_{n\geq 0}$ is k-automatic if and only if the set of subsequences $\{s(k^e n + r)_{n\geq 0} : e \geq 0, 0 \leq r \leq k^e - 1\}$ is finite.

Thue–Morse:
$$T(2n) = T(n)$$
, $T(2n+1) = 1 - T(n)$

Rudin–Shapiro:

$$s(4n+1) = s(2n) = s(n)$$

$$s(8n+7) = s(2n+1)$$

$$s(16n+3) = s(8n+3)$$

$$s(16n+11) = s(4n+3)$$

Let *p* be a prime. Let \mathbb{F}_q be a finite field of characteristic *p*.

Theorem (Christol–Kamae–Mendès France–Rauzy 1980)

A sequence $s(n)_{n\geq 0}$ of elements in \mathbb{F}_q is *p*-automatic if and only if the formal power series $\sum_{n\geq 0} s(n)t^n$ is algebraic over $\mathbb{F}_q(t)$.

For Thue–Morse,
$$G(t) = \sum_{n \ge 0} T(n)t^n$$
 over $\mathbb{F}_2(t)$ satisfies

$$tG(t) + (1+t)G(t)^2 + (1+t^4)G(t)^4 = 0.$$

The assumption $s(n) \in \mathbb{F}_q$ is not restrictive: For a sequence on Σ , any injection $\Sigma \hookrightarrow \mathbb{F}_q$ gives an algebraic series.

Algebraic sequences modulo p

Let C(n) be the *n*th Catalan number and $G(t) = \sum_{n \ge 0} C(n)t^n$. Reducing

$$I - G(t) + tG(t)^2 = 0$$

modulo *p* implies that $C(n) \mod p$ is *p*-automatic. For p = 5:

Old characterizations of automatic sequences

Automatic sequences and cellular automata

One-dimensional cellular automata

- finite alphabet Σ (for example $\{\Box, \blacksquare\}$)
- function $i : \mathbb{Z} \to \Sigma$ (the initial condition)
- integer $\ell \geq 0$
- function $f: \Sigma^{\ell} \to \Sigma$ (the local update rule)

Binomial coefficients

Binomial coefficients modulo k are produced by cellular automata.

The local rule is f(u, v, w) = u + w modulo k.

Column sequences

Finiteness condition: The initial condition is eventually periodic in both directions.

The Thue–Morse sequence occurs in this $\ell = 5$ cellular automaton:

Old characterizations of automatic sequences

A cellular automaton is linear if the local rule $f : \mathbb{F}_q^{\ell} \to \mathbb{F}_q$ is \mathbb{F}_q -linear.

For example, f(u, v, w) = u + w for binomial coefficients modulo p.

Theorem (Litow–Dumas 1993)

Every column of a linear cellular automaton over \mathbb{F}_p is p-automatic.

The proof uses two theorems about formal power series — Christol's theorem and Furstenberg's theorem.

The diagonal of a bivariate series $\sum_{n\geq 0} \sum_{m\geq 0} a(n,m)t^n x^m$ is

$$\sum_{n\geq 0}a(n,n)t^n.$$

Theorem (Furstenberg 1967)

A formal power series G(t) is algebraic over $\mathbb{F}_q(t)$ if and only if G(t) is the diagonal of a bivariate rational series F(t, x).

Represent the *n*th row $\cdots a(n, -1) a(n, 0) a(n, 1) \cdots$ by

$$R_n(x) = \cdots + a(n, -1)x^{-1} + a(n, 0)x^0 + a(n, 1)x^1 + \cdots,$$

which is rational since the initial condition is eventually periodic.

Linearity of the rule means $R_{n+1}(x) = C(x)R_n(x)$ for some C(x). For binomial coefficients, $C(x) = x + \frac{1}{x}$.

Then the bivariate series $F(t, x) = \sum_{n \ge 0} \sum_{m \in \mathbb{Z}} a(n, m) t^n x^m = \sum_{n \ge 0} R_n(x) t^n = \sum_{n \ge 0} (C(x)t)^n R_0(x)$ is rational.

Column *m* of F(t, x) is the diagonal of $x^{-m}F(tx, x)$, hence it is algebraic (Furstenberg) and hence *p*-automatic (Christol et al.).

Given a *p*-automatic sequence, can we compute a cellular automaton?

We can reverse the proof, using the other directions of Christol's and Furstenberg's theorems.

Issue 1: We may not get a recurrence for $R_n(x)$ of order 1. In general, $C_0(x)R_n(x) = \sum_{i=1}^d C_i(x)R_{n-i}(x)$.

To deal with this, we introduce memory into the cellular automaton.

Issue 2: We need $C_0(x)$ to be a (nonzero) monomial so that each $\frac{C_i(x)}{C_0(x)}$ is a Laurent polynomial, so that the update rule is local.

Constructing a Thue–Morse cellular automaton

Christol's theorem gives that $x = \sum_{n \ge 0} T(n)t^n$ satisfies

$$tx + (1 + t)x^2 + (1 + t^4)x^4 = 0.$$

Replace $x \mapsto 0 + 1t + 1t^2 + t^2x$, and divide by t^3 . Then $G(t) := \sum_{n \ge 0} T(n+3)t^n$ satisfies P(t, G(t)) = 0, where $P(t, x) = x + x^2t + (1 + x^2)t^2 + x^4t^5 + (1 + x^4)t^9$.

By Furstenberg's theorem, T(n+2) is the coefficient of x^{-2} in $R_n(x)$:

$$\frac{\frac{\partial P}{\partial x}(t,x)}{P(t,x)} = \frac{1}{x} + t + \left(\frac{1}{x^2} + 1 + x\right)t^2 + \cdots = \sum_{n\geq 0}R_n(x)t^n.$$

 $R_n(x)$ satisfies the recurrence

$$R_n(x) = xR_{n-1}(x) + \left(\frac{1}{x} + x\right)R_{n-2}(x) + x^3R_{n-5}(x) + \left(\frac{1}{x} + x^3\right)R_{n-9}(x)$$

for all $n \ge 10$, which determines a linear cellular automaton rule with memory 9.

Restoring initial terms

Extend the memory to 9 + 3 = 12 without introducing dependence on the earliest 3 rows.

Then $T(n)_{n\geq 0}$ occurs in Column -2 from initial conditions R_{-2}, \ldots, R_9 .

0110100110010110 ···

Thue–Morse cellular automaton with memory 12

Theorem (Rowland–Yassawi)

Every p-automatic sequence of elements in \mathbb{F}_q occurs as a column of a linear cellular automaton over \mathbb{F}_q with memory whose initial conditions are eventually periodic in both directions.

Combined with the Litow–Dumas result, we have a new characterization of p-automatic sequences (for prime p).

Rudin–Shapiro cellular automaton with memory 20

Baum–Sweet cellular automaton with memory 27

The Baum–Sweet sequence 110110010100 ··· is defined by

If we give up linearity, we can get a cellular automaton without memory.

Corollary

Every p-automatic sequence occurs as a column of a cellular automaton whose initial condition is eventually periodic in both directions. A cellular automaton rule is invertible if it has an inverse rule.

In other words, it can be evolved backward in time as well as forward.

Corollary

If $s(n)_{n\geq 0}$ is a p-automatic sequence, then for some $r \geq 0$ the sequence $s(n)_{n\geq r}$ occurs as a column of an invertible cellular automaton with memory.

Invertible Rudin–Shapiro cellular automaton

- Given a *p*-automatic sequence on the alphabet Σ ⊂ F_q, one can find a cellular automaton (without memory) with at most *q*^{d+r+1} + |Σ| states containing the sequence as a column. Can this bound be improved?
- Does there exist a 3-automatic sequence $s(n)_{n\geq 0}$ on a binary alphabet such that s(n) is not eventually periodic and s(n) occurs as a column of a (nonlinear) 2-state cellular automaton?
- Exhibit a sequence that does not occur as the column of a cellular automaton with eventually periodic initial conditions.