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@ Old characterizations of automatic sequences
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The Thue—Morse sequence

T(n) = 0 if the binary representation of n has an even number of 1s
~ |1 ifthe binary representation of n has an odd number of 1s.

The Thue—Morse sequence T(n),>o is

01101001100101101001011001101001 --- .

The Thue—Morse sequence is 2-automatic.
It is computed by a deterministic finite automaton with output in base 2:

Qe

A sequence s(n),> is k-automatic if there is DFAO whose output is
s(n) when fed the base-k digits of n, from least to most significant.
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The sequence’s alphabet is not necessarily the digits {0,1,..., k}.

The optimal solution
acbacbacbacbacbacbacbacbacbacbac - - -

to the “infinite” tower of Hanoi puzzle is 2-automatic.
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Tower of Hanoi automata

An automaton:
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An automaton that reads the most significant digit first:
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Thue—Morse arises in . ..

@ Combinatorics on words:
An overlap is a word awawa where w is a word and ais a letter.
The Thue—Morse word 0110100110010110 - - - is overlap-free.
@ Multigrades:
0°+3%+5%+6°=104+20449470 -4
0'+3" 45" +6' =11 42" 141 71— 14
0°+3+5°+6°=12+22+42+7° =70
21
In general, Z( 1N MM =0 for0<m<¢—1.

@ Interesting products:

H(nﬂ)(q)r(n)_1-4-6.7~1o-11-13-16..._i
S0 T 2.3.5.8.9.-12-14-15--- /2
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More 2-automatic sequences

@ The characteristic sequence of powers of 2 is 2-automatic:

@ The Rudin—-Shapiro sequence

s(n) = 0 if the binary representation of n has an even number of 11s
~ |1 ifthe binary representation of n has an odd number of 11s

is 2-automatic:
00010010000111010001001011100010 ---.

—3 ——1— 0
4@‘9 = 0C <« 1 S 1K <« /IQ
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Dragon curve

The sequence of turns in the paperfolding curve is 2-automatic.
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Characterization as a fixed point

Several characterizations of automatic sequences are known.

Theorem (Cobham 1972)

A sequence is k-automatic if and only if it is the image, under a coding,
of a fixed point of a k-uniform morphism.

Thue—-Morse: ¢(0) =01, (1) = 10; then ¢*~(0) = 01101001 - - -.

Rudin—-Shapiro: ¢(a) = ab, p(b) = ac, ¢(c) = db, p(d) = dc;
T(a) =7(b) =0,7(c) = 7(d) = 1.

¢“(a) = abacabdbabacdcacabacabdbdcdbabdb - - -
7(¢¥(a)) = 00010010000111010001001011100010 - - -
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Subsequences characterization

Theorem (Eilenberg 1974)

A sequence s(n)n> Is k-automatic if and only if the set of
subsequences {s(k®n+ r),>o0 : € > 0,0 < r < k® — 1} is finite.

Thue—Morse: T(2n)=T(n), T(2n+1)=1—T(n)
Rudin—-Shapiro:

s(4n+1) = s(2n) = s(n)
s(8n+7)=s(2n+1)
s(16n+ 3) = s(8n+ 3)
s(16n+11) = s(4n+3)
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Algebraic characterization

Let p be a prime.
Let Fq be a finite field of characteristic p.

Theorem (Christol-Kamae—Mendés France—Rauzy 1980)

A sequence s(n),>o of elements inF is p-automatic if and only if
the formal power series -, S(n)t" is algebraic over Fq(t).

For Thue—Morse, G(t) = Z T(n)t" over F»(t) satisfies
n>0

tG(t) + (1 + HG() + (1 + tYG(H)* = 0.

The assumption s(n) € Fy is not restrictive:
For a sequence on X, any injection >~ — F, gives an algebraic series.
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Algebraic sequences modulo p

Let C(n) be the nth Catalan number and G(t) = >, C(n)t".
Reducing B
1—G(t) +tG(t)? =0

modulo p implies that C(n) mod p is p-automatic. For p = 5:
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e Cellular automata
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One-dimensional cellular automata

@ finite alphabet X (for example {{J, ®})

@ function /i : Z — X (the initial condition)

@ integer ¢ >0

@ function f : ¥ — ¥ (the local update rule)
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Binomial coefficients

Binomial coefficients modulo k are produced by cellular automata.

The local rule is f(u, v, w) = u+ w modulo k.
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Column sequences

characteristic sequence of 2" bits of =

characteristic sequence of n°> statistically random sequences
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Finiteness condition

Finiteness condition:
The initial condition is eventually periodic in both directions.

The Thue—Morse sequence occurs in this ¢ = 5 cellular automaton:

i,
il e
[ ;I.ll l ] |i | |I

0110100110010110 ---
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e Automatic sequences and cellular automata
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Linear cellular automata

A cellular automaton is linear if the local rule f : Ff, — Fy is Fq-linear.

For example, f(u, v, w) = u + w for binomial coefficients modulo p.

Theorem (Litow—Dumas 1993)
Every column of a linear cellular automaton over I, is p-automatic.

The proof uses two theorems about formal power series —
Christol’s theorem and Furstenberg’s theorem.
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Furstenberg’s theorem

The diagonal of a bivariate series >~ > 50 @(n, mt"x™ is

Z a(n, nt".

n>0

Theorem (Furstenberg 1967)

A formal power series G(t) is algebraic over Fq(t) if and only if
G(t) is the diagonal of a bivariate rational series F(t, x).
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Sketch of Litow—Dumas proof

Represent the nthrow --- a(n,—1) a(n,0)a(n,1) --- by
Rn(x) =---4a(n,—1)x~ "+ a(n,0)x° + a(n, )x' + - .-,
which is rational since the initial condition is eventually periodic.

Linearity of the rule means R, 1(x) = C(x)Rn(x) for some C(x).
For binomial coefficients, C(x) = x + }

Then the bivariate series F(t,x) =350 > mez @n, mt"x™ =
> >0 An(X)t" = 32,50(C(x)1)"Ro(x) is rational.

Column m of F(t, x) is the diagonal of x~"F(tx, x), hence it is
algebraic (Furstenberg) and hence p-automatic (Christol et al.).
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The converse

Given a p-automatic sequence, can we compute a cellular automaton?

We can reverse the proof, using the other directions of Christol’s and
Furstenberg’s theorems.

Issue 1: We may not get a recurrence for R,(x) of order 1.
In general, Co(x)Rn(X) = XL, Ci(X)Rn_i(X).

To deal with this, we introduce memory into the cellular automaton.

Issue 2: We need Cy(x) to be a (nonzero) monomial so that each g(’)((f())

is a Laurent polynomial, so that the update rule is local.

Eric Rowland A characterization of p-automatic sequences 20183 April 5 22/32



Constructing a Thue—Morse cellular automaton

Christol's theorem gives that x = 3., T(n)t" satisfies
tx+(1+Hx2+(1+tHx*=0

Replace x + 0 + 1t 4+ 1% 4 t°x, and divide by .
Then G(t) := 50 T(n + 3)t" satisfies P(t, G(t)) = 0, where

P(t,x) = x + X2t + (1 + x®)2 + x*° + (1 + xH)°.
By Furstenberg’s theorem, T(n + 2) is the coefficient of x~2 in R,(x):

oP
®tx) 1 1
A SRR = Rn(x)

n>0

Rn(x) satisfies the recurrence

Hn(X) = XF',nA(X)“' (:( + X> Ran(X)‘{'XSRnfS(X)‘}' <)1( + X3> Rn,g(X)

for all n > 10, which determines a linear cellular automaton rule with
memory 9.
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Restoring initial terms

Extend the memory to 9 + 3 = 12 without introducing dependence on
the earliest 3 rows.

Then T(n),>o occurs in Column —2 from initial conditions R_», ..., Ry.

ol
|
I..ﬁl: -
0110100110010110 - --
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Thue—Morse cellular automaton with memory 12
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Theorem (Rowland—Yassawi)

Every p-automatic sequence of elements in Fq occurs as a column of
a linear cellular automaton over IFq with memory whose initial
conditions are eventually periodic in both directions.

Combined with the Litow—Dumas result, we have a new
characterization of p-automatic sequences (for prime p).
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is defined by

The Baum—-Sweet sequence 110110010100 ---

contains a block of Os of odd length

if the binary representation of n
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Removing memory

If we give up linearity, we can get a cellular automaton without memory.

Every p-automatic sequence occurs as a column of a cellular
automaton whose initial condition is eventually periodic in both
directions.
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Invertible cellular automata

A cellular automaton rule is invertible if it has an inverse rule.

In other words, it can be evolved backward in time as well as forward.

If s(n)n>0 is a p-automatic sequence, then for some r > 0 the
sequence s(n)n>, occurs as a column of an invertible cellular
automaton with memory.
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Open questions

@ Given a p-automatic sequence on the alphabet > C Fq, one can
find a cellular automaton (without memory) with at most
g9t + || states containing the sequence as a column.
Can this bound be improved?

@ Does there exist a 3-automatic sequence s(n),>o on a binary
alphabet such that s(n) is not eventually periodic and s(n) occurs
as a column of a (nonlinear) 2-state cellular automaton?

@ Exhibit a sequence that does not occur as the column of a cellular
automaton with eventually periodic initial conditions.
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