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The Thue–Morse sequence

T (n) =

{
0 if the binary representation of n has an even number of 1s
1 if the binary representation of n has an odd number of 1s.

The Thue–Morse sequence T (n)n≥0 is

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 · · · .

The Thue–Morse sequence is 2-automatic.
It is computed by a deterministic finite automaton with output in base 2:

0

1
0

1
0 1

A sequence s(n)n≥0 is k -automatic if there is DFAO whose output is
s(n) when fed the base-k digits of n, from least to most significant.

Eric Rowland A characterization of p-automatic sequences 2013 April 5 3 / 32



Tower of Hanoi

The sequence’s alphabet is not necessarily the digits {0,1, . . . , k}.

The optimal solution

acbacbacbacbacbacbacbacbacbacbac · · ·

to the “infinite” tower of Hanoi puzzle is 2-automatic.
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Tower of Hanoi automata

An automaton:
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An automaton that reads the most significant digit first:
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Thue–Morse arises in . . .

Combinatorics on words:
An overlap is a word awawa where w is a word and a is a letter.
The Thue–Morse word 0110100110010110 · · · is overlap-free.

Multigrades:

00 + 30 + 50 + 60 = 10 + 20 + 40 + 70 = 4

01 + 31 + 51 + 61 = 11 + 21 + 41 + 71 = 14

02 + 32 + 52 + 62 = 12 + 22 + 42 + 72 = 70

In general,
2`−1∑
n=0

(−1)T (n)nm = 0 for 0 ≤ m ≤ `− 1.

Interesting products:∏
n≥0

(n + 1)(−1)T (n)
=

1 · 4 · 6 · 7 · 10 · 11 · 13 · 16 · · ·
2 · 3 · 5 · 8 · 9 · 12 · 14 · 15 · · ·

=
1√
2
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More 2-automatic sequences

The characteristic sequence of powers of 2 is 2-automatic:
0

1

0

1

0

1

0 1 0

The Rudin–Shapiro sequence

s(n) =

{
0 if the binary representation of n has an even number of 11s
1 if the binary representation of n has an odd number of 11s

is 2-automatic:

0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 0 · · · .

0

1
0

1 0
1 010 0 1 1
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Dragon curve

The sequence of turns in the paperfolding curve is 2-automatic.
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Characterization as a fixed point

Several characterizations of automatic sequences are known.

Theorem (Cobham 1972)
A sequence is k-automatic if and only if it is the image, under a coding,
of a fixed point of a k-uniform morphism.

Thue–Morse: ϕ(0) = 01, ϕ(1) = 10; then ϕω(0) = 01101001 · · · .

Rudin–Shapiro: ϕ(a) = ab, ϕ(b) = ac, ϕ(c) = db, ϕ(d) = dc;
τ(a) = τ(b) = 0, τ(c) = τ(d) = 1.

ϕω(a) = abacabdbabacdcacabacabdbdcdbabdb · · ·
τ(ϕω(a)) = 00010010000111010001001011100010 · · ·
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Subsequences characterization

Theorem (Eilenberg 1974)
A sequence s(n)n≥0 is k-automatic if and only if the set of
subsequences {s(ken + r)n≥0 : e ≥ 0,0 ≤ r ≤ ke − 1} is finite.

Thue–Morse: T (2n) = T (n), T (2n + 1) = 1− T (n)

Rudin–Shapiro:

s(4n + 1) = s(2n) = s(n)

s(8n + 7) = s(2n + 1)

s(16n + 3) = s(8n + 3)

s(16n + 11) = s(4n + 3)
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Algebraic characterization

Let p be a prime.
Let Fq be a finite field of characteristic p.

Theorem (Christol–Kamae–Mendès France–Rauzy 1980)
A sequence s(n)n≥0 of elements in Fq is p-automatic if and only if
the formal power series

∑
n≥0 s(n)tn is algebraic over Fq(t).

For Thue–Morse, G(t) =
∑
n≥0

T (n)tn over F2(t) satisfies

tG(t) + (1 + t)G(t)2 + (1 + t4)G(t)4 = 0.

The assumption s(n) ∈ Fq is not restrictive:
For a sequence on Σ, any injection Σ ↪→ Fq gives an algebraic series.
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Algebraic sequences modulo p

Let C(n) be the nth Catalan number and G(t) =
∑

n≥0 C(n)tn.
Reducing

1−G(t) + tG(t)2 = 0

modulo p implies that C(n) mod p is p-automatic. For p = 5:
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One-dimensional cellular automata

finite alphabet Σ (for example {�,�})
function i : Z→ Σ (the initial condition)
integer ` ≥ 0
function f : Σ` → Σ (the local update rule)

��� ��� ��� ��� ��� ��� ��� ���
� � � � � � � �
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Binomial coefficients

Binomial coefficients modulo k are produced by cellular automata.

The local rule is f (u, v ,w) = u + w modulo k .
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Column sequences

characteristic sequence of 2n bits of π

characteristic sequence of n2 statistically random sequences
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Finiteness condition

Finiteness condition:
The initial condition is eventually periodic in both directions.

The Thue–Morse sequence occurs in this ` = 5 cellular automaton:

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 · · ·
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Linear cellular automata

A cellular automaton is linear if the local rule f : F`
q → Fq is Fq-linear.

For example, f (u, v ,w) = u + w for binomial coefficients modulo p.

Theorem (Litow–Dumas 1993)
Every column of a linear cellular automaton over Fp is p-automatic.

The proof uses two theorems about formal power series —
Christol’s theorem and Furstenberg’s theorem.
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Furstenberg’s theorem

The diagonal of a bivariate series
∑

n≥0
∑

m≥0 a(n,m)tnxm is∑
n≥0

a(n,n)tn.

Theorem (Furstenberg 1967)
A formal power series G(t) is algebraic over Fq(t) if and only if
G(t) is the diagonal of a bivariate rational series F (t , x).
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Sketch of Litow–Dumas proof

Represent the nth row · · · a(n,−1) a(n,0) a(n,1) · · · by

Rn(x) = · · ·+ a(n,−1)x−1 + a(n,0)x0 + a(n,1)x1 + · · · ,

which is rational since the initial condition is eventually periodic.

Linearity of the rule means Rn+1(x) = C(x)Rn(x) for some C(x).
For binomial coefficients, C(x) = x + 1

x .

Then the bivariate series F (t , x) =
∑

n≥0
∑

m∈Z a(n,m)tnxm =∑
n≥0 Rn(x)tn =

∑
n≥0(C(x)t)nR0(x) is rational.

Column m of F (t , x) is the diagonal of x−mF (tx , x), hence it is
algebraic (Furstenberg) and hence p-automatic (Christol et al.).
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The converse

Given a p-automatic sequence, can we compute a cellular automaton?

We can reverse the proof, using the other directions of Christol’s and
Furstenberg’s theorems.

Issue 1: We may not get a recurrence for Rn(x) of order 1.
In general, C0(x)Rn(x) =

∑d
i=1 Ci(x)Rn−i(x).

To deal with this, we introduce memory into the cellular automaton.

Issue 2: We need C0(x) to be a (nonzero) monomial so that each Ci (x)
C0(x)

is a Laurent polynomial, so that the update rule is local.
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Constructing a Thue–Morse cellular automaton

Christol’s theorem gives that x =
∑

n≥0 T (n)tn satisfies

tx + (1 + t)x2 + (1 + t4)x4 = 0.

Replace x 7→ 0 + 1t + 1t2 + t2x , and divide by t3.
Then G(t) :=

∑
n≥0 T (n + 3)tn satisfies P(t ,G(t)) = 0, where

P(t , x) = x + x2t + (1 + x2)t2 + x4t5 + (1 + x4)t9.

By Furstenberg’s theorem, T (n + 2) is the coefficient of x−2 in Rn(x):
∂P
∂x (t , x)

P(t , x)
=

1
x

+ t +

(
1
x2 + 1 + x

)
t2 + · · · =

∑
n≥0

Rn(x)tn.

Rn(x) satisfies the recurrence

Rn(x) = xRn−1(x)+

(
1
x

+ x
)

Rn−2(x)+x3Rn−5(x)+

(
1
x

+ x3
)

Rn−9(x)

for all n ≥ 10, which determines a linear cellular automaton rule with
memory 9.
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Restoring initial terms

Extend the memory to 9 + 3 = 12 without introducing dependence on
the earliest 3 rows.
Then T (n)n≥0 occurs in Column −2 from initial conditions R−2, . . . ,R9.

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 · · ·
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Thue–Morse cellular automaton with memory 12
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Result

Theorem (Rowland–Yassawi)
Every p-automatic sequence of elements in Fq occurs as a column of
a linear cellular automaton over Fq with memory whose initial
conditions are eventually periodic in both directions.

Combined with the Litow–Dumas result, we have a new
characterization of p-automatic sequences (for prime p).
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Rudin–Shapiro cellular automaton with memory 20
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Baum–Sweet cellular automaton with memory 27

The Baum–Sweet sequence 1 1 0 1 1 0 0 1 0 1 0 0 · · · is defined by

s(n) =

{
0 if the binary representation of n

contains a block of 0s of odd length
1 if not.
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Removing memory

If we give up linearity, we can get a cellular automaton without memory.

Corollary
Every p-automatic sequence occurs as a column of a cellular
automaton whose initial condition is eventually periodic in both
directions.
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Invertible cellular automata

A cellular automaton rule is invertible if it has an inverse rule.

In other words, it can be evolved backward in time as well as forward.

Corollary

If s(n)n≥0 is a p-automatic sequence, then for some r ≥ 0 the
sequence s(n)n≥r occurs as a column of an invertible cellular
automaton with memory.
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Invertible Rudin–Shapiro cellular automaton
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Open questions

Given a p-automatic sequence on the alphabet Σ ⊂ Fq, one can
find a cellular automaton (without memory) with at most
qd+r+1 + |Σ| states containing the sequence as a column.
Can this bound be improved?

Does there exist a 3-automatic sequence s(n)n≥0 on a binary
alphabet such that s(n) is not eventually periodic and s(n) occurs
as a column of a (nonlinear) 2-state cellular automaton?

Exhibit a sequence that does not occur as the column of a cellular
automaton with eventually periodic initial conditions.
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