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Abstract. The notion of a k-automatic set of integers is well-studied. We

develop a new notion — the k-automatic set of rational numbers — and prove

basic properties of these sets, including closure properties and decidability.

1. Introduction

Let k be an integer ≥ 2, and let N = {0, 1, 2, . . .} denote the set of non-negative
integers. Let Σk = {0, 1, . . . , k−1} be an alphabet. Given a word w = a1a2 · · · at ∈
Σ∗k, we let [w]k denote the integer that it represents in base k; namely,

(1) [w]k =
∑

1≤i≤t

aik
t−i,

where (as usual) an empty sum is equal to 0. For example, [101011]2 = 43.
Note that in this framework, every element of N has infinitely many distinct

representations as words, each having a certain number of leading zeroes. Among
all such representations, the one with no leading zeroes is called the canonical
representation; it is an element of Ck := {ε} ∪ (Σk−{0})Σ∗k. For an integer n ≥ 0,
we let (n)k denote its canonical representation.

Given a language L ⊆ Σ∗k, we can define the set of integers it represents, as
follows:

(2) [L]k = {[w]k : w ∈ L}.
Definition 1. We say that a set S ⊆ N is k-automatic if there exists a regular
language L ⊆ Σ∗k such that S = [L]k.

The class of k-automatic sets of natural numbers has been widely studied (e.g.,
[3, 4, 1]), and many properties of these sets are known. For example, it is possible
to state an equivalent definition involving only canonical representations:

Definition 2. A set S ⊆ N is k-automatic if the language (S)k := {(n)k : n ∈ S}
is regular.

To see the equivalence of Definitions 1 and 2, note that if L is a regular language,
then so is the language L′ obtained by removing all leading zeroes from each word
in L.

A slightly more general concept is that of k-automatic sequence. Let ∆ be a
finite alphabet. Then a sequence (or infinite word) (an)n≥0 over ∆ is said to be
k-automatic if, for every c ∈ ∆, the set of fibers Fc = {n ∈ N : an = c} is a
k-automatic set of natural numbers. Again, this class of sequences has been widely
studied [3, 4, 1]. The following result is well-known [4]:

Theorem 1. The sequence (an)n≥0 is k-automatic iff its k-kernel, the set of its
subsequences K = {(aken+f )n≥0 : e ≥ 0, 0 ≤ f < ke}, is finite.
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In a previous paper [11], the second author extended the notion of k-automatic
sets over N to sets over Q≥0, the set of non-negative rational numbers. In this
paper, we will obtain some basic results about this new class. Our principal re-
sults are Theorem 4 (characterizing the sets of integers), Corollary 2 (showing that
k-automatic sets of rationals are not closed under intersection), and Theorem 9
(showing that it is decidable if a k-automatic set is infinite).

Our class has some similarity to another class studied by Even [5] and Hartmanis
and Stearns [6]; their class corresponds to the topological closure of our k-automatic
sets, where the denominators are restricted to powers of k.

2. Representing rational numbers

A natural representation for the non-negative rational number p/q is the pair
(p, q) with q 6= 0. Of course, this representation has the drawback that every
element of Q≥0 has infinitely many representations, each of the form (jp/d, jq/d)
for some j ≥ 1, where d = gcd(p, q).

We might try to ensure uniqueness of representations by considering only “re-
duced” representations (those in “lowest terms”), which amounts to requiring that
gcd(p, q) = 1. However, this condition cannot be checked by automata — see Re-
mark 1 below — and deciding if an arbitrary regular language consists entirely
of reduced representations is not evidently computable. Furthermore, insisting on
reduced representations rules out the representation of some reasonable sets of ra-
tionals, such as {(km − 1)/(kn − 1) : m,n ≥ 1} (see Theorem 6). For these
reasons, we allow the rational number p/q to be represented by any pair
of integers (p′, q′) with p/q = p′/q′.

Next, we need to see how to represent a pair of integers as a word over a fi-
nite alphabet. Here, we follow the ideas of Salon [8, 9, 10]. Consider the al-
phabet Σ2

k. A finite word w over Σ2
k can be considered as a sequence of pairs

w = [a1, b1][a2, b2] · · · [an, bn] where ai, bi ∈ Σk for 1 ≤ i ≤ n. We can now define
the projection maps π1, π2, as follows:

π1(w) = a1a2 · · · an; π2(w) = b1b2 · · · bn.
Note that the domain and range of each projection are (Σ2

k)∗ and Σ∗k, respec-
tively. Then we define [w]k = ([π1(w)]k, [π2(w)]k). Thus, for example, if w =
[1, 0][0, 1][1, 0][0, 0][1, 1][1, 0], then [w]2 = (43, 18).

In this framework, every pair of integers (p, q) again has infinitely many distinct
representations, arising from padding on the left by leading pairs of zeroes, that is,
by [0, 0]. Among all such representations, the canonical representation is the one
having no leading pairs of zeroes. We write it as (p, q)k.

We now state the fundamental definitions of this paper:

Definition 3. Given a word w ∈ (Σ2
k)∗ with [π2(w)]k 6= 0, we define

quok(w) :=
[π1(w)]k
[π2(w)]k

.

If [π2(w)]k = 0, then quok(w) is not defined. Further, if [π2(w)]k 6= 0 for all
w ∈ L, then quok(L) := {quok(w) : w ∈ L}. A set of rational numbers S ⊆ Q≥0
is k-automatic if there exists a regular language L ⊆ (Σ2

k)∗ such that quok(L) = S.

Note that in our definition, a given rational number α can have multiple rep-
resentations in two different ways: it can have non-canonical representations that
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begin with leading zeroes, and it can have “unreduced” representations (p, q) where
gcd(p, q) > 1.

Given a set S ⊆ Q, if S contains a non-integer, then by calling it k-automatic, it is
clear that we intend this to mean automatic in the sense of this section. But what if
S ⊆ N? Then calling it “automatic” might mean automatic in the usual sense, as in
Section 1, or in the extended sense introduced in this section, treating S as a subset
of Q. In Theorem 4 we will see that these two interpretations actually coincide for
subsets of N, but in order to prove this, we need some notation to distinguish
between the two types of representations. So, by (N, k)-automatic we mean the
interpretation in Section 1 and by (Q, k)-automatic we mean the interpretation in
this section.

So far we have only considered representations where the leftmost digit is the
most significant digit. However, sometimes it is simpler to deal with reversed rep-
resentations where the leftmost digit is the least significant digit. In other words,
sometimes it is easier to deal with the reversed word wR and reversed language LR

instead of w and L, respectively. Since the regular languages are (effectively) closed
under reversal, for most of our results it does not matter which representation we
choose, and we omit extended discussion of this point.

We use the following notation for intervals: I[α, β] denotes the closed interval
{x : α ≤ x ≤ β}, and similarly for open- and half-open intervals.

3. Examples

To build intuition, we give some examples of k-automatic sets of rationals.

Example 1. Let k = 2, and consider the regular language L1 defined by the regular
expression A∗{[0, 1], [1, 1]}A∗, where A = {[0, 0], [0, 1], [1, 0], [1, 1]}. This regular
expression specifies all pairs of integers where the second component has at least
one nonzero digit — the point being to avoid division by 0. Then quok(L) = Q≥0,
the set of all non-negative rational numbers.

Example 2. Consider the regular language

L2 = {w ∈ (Σ2
k)∗ : π1(w) ∈ Ck ∪ {0} and [π2(w)]k = 1}.

Then quok(L2) = N.

Example 3. Let k = 3, and consider the regular language L3 defined by the regular
expression [0, 1]{[0, 0], [2, 0]}∗. Then quok(L2) is the 3-adic Cantor set, the set of
all rational numbers in the “middle-thirds” Cantor set with denominators a power
of 3 [2].

Example 4. Let k = 4, and consider the set S = {0, 1, 3, 4, 5, 11, 12, 13, . . .} of
all non-negative integers that can be represented using only the digits 0, 1,−1 in
base 4. Consider the set L5 = {(p, q)4 : p, q ∈ S}. It is not hard to see that L5

is (Q, 4)-automatic. The main result in [7] can be phrased as follows: quo4(L5)
contains every odd integer. In fact, an integer t is in quo4(L5) if and only if the
exponent of the largest power of 2 dividing t is even.

Example 5. Note that quok(L1 ∪ L2) = quok(L1) ∪ quok(L2) but the analogous
identity involving intersection need not hold. As an example, consider L1 = {[2, 1]}
and L2 = {[4, 2]}. Then quo10(L1 ∩ L2) = ∅ 6= {2} = quo10(L1) ∩ quo10(L2).



4 ERIC ROWLAND AND JEFFREY SHALLIT

4. Basic results

In this section we obtain some basic results about automatic sets of rationals.
First we state a result from [11]:

Theorem 2. Let β be a non-negative real number and define

L≤β = {w ∈ (Σ2
k)∗ : quok(w) ≤ β},

and analogously for the other relations <,=,≥, >, 6=. Then L≤β (resp., L<β, L=β,
L≥β, L>β) is regular iff β is a rational number.

Lemma 1. Let M be a DFA with input alphabet Σ2
k and let F ⊆ Q≥0 be a finite

set of integers. Then the following problems are recursively solvable:

(1) Is F ⊆ quok(L(M))?
(2) Is quok(L(M)) ⊆ F?

Proof. To decide if F ⊆ quok(L(M)), we simply check, using Theorem 2, whether
x ∈ quok(L(M)) for each x ∈ F .

To decide if quok(L(M)) ⊆ F , we create DFA’s accepting L=x for each x ∈
F , using Theorem 2. Now we create a DFA accepting all representations of all
elements of F using the usual “direct product” construction for the union of regular
languages. Since F is finite, the resulting DFA A is finite. Now, using the usual
direct product construction, we create a DFA accepting L(A)−L(M) and check to
see if its language is nonempty. �

Suppose S is a set of real numbers, and α is a real number. We introduce the
following notation:

S + α := {x+ α : x ∈ S} S
.− α := {max(x− α, 0) : x ∈ S}

α
.− S := {max(α− x, 0) : x ∈ S} αS := {αx : x ∈ S}.

Theorem 3. The class of k-automatic sets of rational numbers is closed under the
following operations: (i) union; (ii) S → S + α for α ∈ Q≥0; (iii) S → S

.− α
for α ∈ Q≥0; (iv) S → α

.− S for α ∈ Q≥0; (v) S → αS for α ∈ Q≥0; (vi)
S → {1/x : x ∈ S \ {0}}.

Proof. We prove only item (2), with the others being similar. We will use the
reversed representation, with the least significant digit appearing first. Write α =
p/q. Let M be a DFA with quok(L(M)) = S. To accept S + α, on input a base-
k representation of x = p′/q′, we transduce the numerator to p′q − pq′ and the
denominator to qq′ (hence effectively computing a representation for x − α), and
simultaneously simulate M on this input, digit-by-digit, accepting if M accepts.

�

We now state one of our main results.

Theorem 4. Let S ⊆ N. Then S is (N, k)-automatic if and only if it is (Q, k)-
automatic.

The proof requires a number of preliminary results. First, we introduce some
terminology and notation. We say a set S ⊆ N is ultimately periodic if there exist
integers n0 ≥ 0, p ≥ 1 such that n ∈ S ⇐⇒ n + p ∈ S, provided n ≥ n0. In
particular, every finite set is ultimately periodic. We let P = {2, 3, 5, . . .} denote
the set of prime numbers. Given a positive integer n, we let pd(n) denote the set
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of its prime divisors. For example, pd(60) = {2, 3, 5}. Given a subset D ⊂ P,
we let π(D) = {n ≥ 1 : pd(n) ⊆ D}, the set of all integers that can be factored
completely using only the primes in D. Finally, let k ≥ 2, n ≥ 1 be integers, and
define νk(n) := max{i : ki | n}, the exponent of the largest power of k dividing n.

The first result we need is the following theorem, which is of independent interest.

Theorem 5. Let D ⊆ P be a finite set of prime numbers, and let S ⊆ π(D). Then
S is k-automatic iff

1. F := { s
kνk(s) : s ∈ S} is finite

and
2. For all f ∈ F the set Uf = {i : kif ∈ S} is ultimately periodic.

First, we need a lemma.

Lemma 2. Let D be a finite set of prime numbers, and let S ⊆ π(D). Let s1, s2, . . .
be an infinite sequence of (not necessarily distinct) elements of S. Then there is an
infinite increasing sequence of indices i1 < i2 < · · · such that si1 | si2 | · · · .

Proof. Case 1: The sequence (si) is bounded. In this case infinitely many of the si
are the same, so we can take the indices to correspond to these si.

Case 2: The sequence (si) is unbounded. In this case we prove the result by
induction on |D|. If |D| = 1, then we can choose a strictly increasing subsequence
of the (si); since all are powers of some prime p, this subsequence has the desired
property.

Now suppose the result is true for all sets D of cardinality t − 1. We prove
it for |D| = t. Since only t distinct primes figure in the factorization of the
si, some prime, say p, must appear with unbounded exponent in the (si). So
there is some subsequence of (si), say (ti), with strictly increasing exponents of
p. Now consider the infinite sequence (ui) given by ui = ti/p

νp(ti). Each ui has
a prime factorization in terms of the primes in D − {p}, so by induction there is
an infinite increasing sequence of indices i1, i2, . . . such that ui1 | ui2 | · · · . Then
pνp(ti1 )ui1 | pνp(ti2 )ui2 | · · · , which corresponds to an infinite increasing sequence
of indices of the original sequence (si). �

Now we can prove Theorem 5.

Proof. ⇐=: S can be written as the disjoint finite union
⋃
f∈F f · {ki : i ∈ Uf},

where Uf is an ultimately periodic set of integers. Each term in the union has
base-k representation (f)k{0i : i ∈ Uf} and hence is regular. It follows that S is
k-automatic.

=⇒: Suppose F is infinite. Notice that, from the definition, no element of F is
divisible by k. Therefore we can write S as the disjoint union

⋃
i≥0 k

iHi, where

Hi := {f ∈ F : kif ∈ S}. Then there are two possibilities: either (a) the sets Hi

are finite for all i ≥ 0, or (b) at least one Hi is infinite.
In case (a), define ui := maxHi for all i ≥ 0. Then the set {u0, u1, . . .} must

be infinite, for otherwise F would be finite. Choose an infinite subsequence of the
ui consisting of distinct elements, and apply Lemma 2. Then there is an infinite
increasing subsequence of indices i1 < i2 < · · · such that ui1 | ui2 | · · · . So the
sequence (uij )j≥1 is strictly increasing.

Now consider the characteristic sequence of S, say (f(n))n≥0, taking values 1 if
n ∈ S and 0 otherwise. Consider the subsequences (fj) in the k-kernel of f defined
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by fj(n) = f(kijn) for n ≥ 0, j ≥ 1. By our construction, the largest n in π(D)
such that k |/n and fj(n) = 1 is n = uij . Since the uij are strictly increasing,
this shows the (infinitely many) sequences (fj) are pairwise distinct. Hence, by
Theorem 1, f is not k-automatic and neither is S.

In case (b), we have Hi is infinite for some i. As mentioned above, S can be
written as the disjoint union

⋃
i≥0 k

iHi. Let L be the language of canonical base-k

expansions of elements of Hi (so that, in particular, no element of L starts with 0).
The base-k representation of elements of kiHi end in exactly i 0’s, and no other
member of S has this property. Since S is assumed to be k-automatic, it follows
that L is regular. Note that no two elements of Hi have a quotient which is divisible
by k, because if they did, the numerator would be divisible by k, which is ruled out
by the condition.

Since L is infinite and regular, by the pumping lemma, there must be words
u, v, w, with v nonempty, such that uvjw ∈ L for all j ≥ 0. Note that for all
integers j ≥ 0 and c ≥ 0 we have

(3) [uvj+cw]k = [uvjw]k · kc|v| + ([vcw]k − [w]k · kc|v|).
Let D = {p1, p2, . . . , pt}. Since [uvjw]k ∈ S ⊆ π(D), it follows that there exists a
double sequence (fr,j)1≤r≤t;j≥1 of non-negative integers such that

(4) [uvjw]k = p
f1,j
1 · · · pft,jt

for all j ≥ 0. From (4), we see that k|uw|+j|v| < p
f1,j
1 · · · pft,jt , and hence (assuming

p1 < p2 < · · · < pt) we get

(|uw|+ j|v|) log k < (
∑

1≤r≤t

fr,j) log pt.

Therefore, there are constants 0 < c1 and J such that c1j <
∑

1≤r≤t fr,j for j ≥ J .

For each j ≥ J now consider the indices r such that fr,j > c1j/t; there must be at
least one such index, for otherwise fr,j ≤ c1j/t for each r and hence

∑
1≤r≤t fr,j ≤

c1j, a contradiction. Now consider t+1 consecutive j’s; for each j there is an index
r with fr,j > c1j/t, and since there are only t possible indices, there must be an
r and two integers l′ and l, with 0 ≤ l < l′ ≤ t, with fr,j+l > c1(j + l)/t and
fr,j+l′ > c1(j+ l′)/t. This is true in any block of t+ 1 consecutive j’s that are ≥ J .
Now there are infinitely many disjoint blocks of t+ 1 consecutive j’s, and so there
must be a single r and a single difference l′ − l that occurs infinitely often. Put
δ = l′ − l.

Now use (3) and take c = δ. We get infinitely many j such that

p
f1,j+δ
1 · · · pft,j+δt = kδ|v|p

f1,j
1 · · · pft,jt + E,

where E = [vδw]k − [w]k · kδ|v| is a constant that is independent of j. Now focus
attention on the exponent of pr on both sides. On the left it is fr,j+δ, which we
know to be at least c1(j + δ)/t. On the right the exponent of pr dividing the first
term is fr,j + δ|v|er (where k = pe11 · · · p

et
t ); this is at least c1j/t. So phr divides E,

where h ≥ c1j/t. But this quantity goes to∞, and E is a constant. So E = 0. But
then

[uvj+δw]k
[uvjw]k

= kδ|v|.

which is impossible, since, as we observed above, two elements of Hi cannot have a
quotient which is a power of k. This contradiction shows that Hi cannot be infinite.
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So now we know that F is finite. Fix some f ∈ F and consider Tf = {ki : kif ∈
S}. Since S is k-automatic, and the set of base-k expansions (Tf )k essentially is
formed by stripping off the bits corresponding to (f)k from the front of each element
of S of which (f)k is a prefix, and replacing it with “1”, this is just a left quotient
followed by concatenation, and hence (Tf )k is regular. Let M ′ be a DFA for (Tf )k,
and consider an input of 1 followed by l 0’s for l = 0, 1, . . . in M ′. Evidently we
eventually get into a cycle, so this says that Uf = {i : kif ∈ S} is ultimately
periodic.

This completes the proof of Theorem 5. �

Corollary 1. Suppose S is a k-automatic set of integers accepted by a finite au-
tomaton M . There is an algorithm to decide, given M , whether there exists a finite
set D ⊆ P such that S ⊆ π(D). Furthermore, if such a D exists, we can also
determine the sets F and Uf in Theorem 5.

Proof. To determine if such a D exists, it suffices to remove all trailing zeroes from
words in (S)k and see if the resulting language is finite. If it is, we know F , and
then it is a simple matter to compute the Uf . �

We can now prove Theorem 4.

Proof. One direction is easy, since if S is (N, k)-automatic, then there is an automa-
ton accepting (S)k. We can now easily modify this automaton to accept all words
over (Σ2

k)∗ whose π2 projection represents the integer 1 and whose π1 projection is
an element of (S)k. Hence S is (Q, k)-automatic.

Now assume S ⊆ N is (Q, k)-automatic. If S is finite, then the result is clear,
so assume S is infinite. Let L be a regular language with quok(L) = S. Without
loss of generality we may assume every representation in L is canonical; there are
no leading [0, 0]’s. Furthermore, by first intersecting with L6=0 we may assume
that L contains no representations of the integer 0. Finally, we can also assume,
without loss of generality, that no representation contains trailing occurrences of
[0, 0], for removing all trailing zeroes from all words in L preserves regularity, and
it does not change the set of numbers represented, as it has the effect of dividing
the numerator and denominator by the same power of k. Since the words in L
represent integers only, the denominator of every representation must divide the
numerator, and hence if the denominator is divisible by k, the numerator must also
be so divisible. Hence removing trailing zeroes also ensures that no denominator is
divisible by k. Let M be a DFA of n states accepting L.

We first show that the set of possible denominators represented by L is actually
finite. Write S = S1 ∪ S2, where S1 = S ∩ I[0, kn+1) and S2 = S ∩ I[kn+1,∞).
Let L1 = L ∩ L<kn+1 , the representations of all numbers < kn+1 in L, and
L2 = L ∩ L≥kn+1 . Both L1 and L2 are regular, by Theorem 2. It now suffices to
show that S2 is (N, k)-automatic.

Consider any t ∈ S2. Let z ∈ L2 be a representation of t. Since t ≥ kn+1,
clearly |z| ≥ n, and so π2(z) must begin with at least n 0’s. Then, by the pumping
lemma, we can write z = uvw with |uv| ≤ n and |v| ≥ 1 such that uviw ∈ L for
all i ≥ 0. However, by the previous remark about π2(z), we see that π2(v) = 0j for
1 ≤ j ≤ n. Hence [π2(z)]k = [π2(uvw)]k = [π2(uw)]k. Since uw must also represent
a member of S, it must be an integer, and hence [π2(z)]k | [π1(uw)]k as well as
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[π2(z)]k | [π1(uvw)]k. Hence

[π2(z)]k | [π1(uvw)]k − [π1(uw)]k = ([π1(uv)]k − [π1(u)]k) · k|w|.
The previous reasoning applies to any z ∈ L2. Furthermore, 0 < [π1(uv)]k −

[π1(u)]k < kn. It follows that every possible denominator d of elements in L2 can
be expressed as d = d1 · d2, where 1 ≤ d1 < kn and d2 | km for some m. It follows
that the set of primes dividing all denominators d is finite, and we can therefore
apply Theorem 5. Since k divides no denominator, the set of possible denominators
is finite.

We can therefore decompose L2 into a finite disjoint union corresponding to
each possible denominator d. Next, we use a finite-state transducer to divide the
numerator and denominator of the corresponding representations by d. For each
d, this gives a new regular language Ad where the denominator is 1. Writing
T :=

⋃
dAd, we have S2 = quok(T ) =

⋃
d quok(Ad). Now we project, throwing

away the second coordinate of elements of T ; the result is regular and hence S is a
k-automatic set of integers. �

As corollaries, we get that the k-automatic sets of rationals are (in contrast with
sets of integers) not necessarily closed under the operations of intersection and
complement.

Theorem 6. Let S1 = {(kn − 1)/(km − 1) : 1 ≤ m < n} and S2 = N. Then
S1 ∩ S2 is not a k-automatic set.

Proof. We can write every element of S1 as p/q, where p = (kn − 1)/(k − 1)
and q = (km − 1)/(k − 1). The base-k representation of p is 1n and the base-k
representation of q is 1m. Thus a representation for S1 is given by the regular
expression [1, 0]+[1, 1]+. We know that N is k-automatic from Example 2.

From a classical result we know that (km − 1) | (kn − 1) if and only if m | n. It
follows that S1 ∩ S2 = T , where T = {(kn−1)/(km−1) : 1 < m < n and m | n}.
If the k-automatic sets of rationals were closed under intersection, then T would be
(N, k)-automatic. Writing n = md, we have (kn−1)/(km−1) = k(d−1)m+· · ·+km+
1, whose base-k representation is (10m−1)d−11. Hence (T )k = {(10m−1)d−11 : m ≥
1, d > 1}. Assume this is regular. Intersecting with the regular language 10∗10∗10∗1
we get {10n10n10n1 : n ≥ 1}. But a routine argument using the pumping lemma
shows this is not even context-free, a contradiction. �

Corollary 2. The class of (Q, k)-automatic sets is not closed under the operations
of intersection or complement.

Proof. We have just shown that this class is not closed under intersection. But
since it is closed under union, if it were closed under complement, too, it would be
closed under intersection, a contradiction. �

Remark 1. The technique above also allows us to prove that the languages Ld =
{(p, q)k : q | p}, Lr = {(p, q)k : gcd(p, q) > 1}, and Lg = {(p, q)k : gcd(p, q) = 1}
are not context-free.

We can also prove a decidability result.

Theorem 7. Given a regular language L ⊆ (Σ2
k)∗, it is decidable whether

(a) quok(L) ⊆ N; (b) quok(L) \ N is finite.
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Proof. For (a), given M accepting L, we first create (using Theorem 2) a DFA
M1 accepting the set T1 := (quok(L) ∩ I[0, kn+1)) \ {0, 1, . . . , kn+1 − 1}. If
T1 6= ∅, then answer “no” and stop. Next, create a DFA M2 accepting the set
T2 := (quok(L) ∩ I[kn+1,∞)). Now project onto the second coordinate, and, using
Corollary 1, decide if the integers so represented are factorable into a finite set of
primes. If not, answer “no” and stop. Finally, using Corollary 1 again, create the
decomposition in that corollary (resulting in only finitely many denominators) and
check for each denominator whether it divides all of its corresponding numerators,
using a transducer.

For (b) we need to check instead whether T1 is a finite set, and whether there
are finitely many exceptions to the second and third steps. �

5. Solvability results

In this section we show that a number of problems involving k-automatic sets of
rational numbers are recursively solvable. We start with a useful lemma.

Lemma 3. Let u, v, w ∈ (Σ2
k)∗ such that |v| ≥ 1, and such that [π1(uvw)]k and

[π2(uvw)]k are not both 0. Define

(5) U :=


quok(w), if [π1(uv)]k = [π2(uv)]k = 0;

∞, if [π1(uv)]k > 0 and [π2(uv)]k = 0;
[π1(uv)]k−[π1(u)]k
[π2(uv)]k−[π2(u)]k

, otherwise.

(a) Then exactly one of the following cases occurs:

(i) quok(uw) < quok(uvw) < quok(uv2w) < · · · < U ;
(ii) quok(uw) = quok(uvw) = quok(uv2w) = · · · = U ;

(iii) quok(uw) > quok(uvw) > quok(uv2w) > · · · > U .

(b) Furthermore, limi→∞ quok(uviw) = U .

Proof. Part (a) is proved in [11]. We now prove the assertion about the limit.
Let j ∈ {1, 2}, let i be an integer ≥ 1, and consider the base-k representation of

the rational number

[πj(uv
iw)]k

ki|v|+|w|
; it looks like πj(u).

i︷ ︸︸ ︷
πj(v)πj(v) · · ·πj(v) .

On the other hand, the base-k representation of

[πj(u)]k +
[πj(v)]k
k|v| − 1

looks like πj(u).πj(v)πj(v) · · · .

Subtracting, we get∣∣∣∣ [πj(uviw)]k
ki|v|+|w|

−
(

[πj(u)]k +
[πj(v)]k
k|v| − 1

)∣∣∣∣ < k−i|v|.

It follows that

lim
i→∞

[πj(uv
iw)]k

ki|v|+|w|
= [πj(u)]k +

[πj(v)]k
k|v| − 1

.
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Furthermore, this limit is 0 if and only if [πj(uv)]k = 0. Hence, provided [π2(uv)]k 6=
0, we get

lim
i→∞

quok(uviw) = lim
i→∞

[π1(uviw)]k
[π2(uviw)]k

= lim
i→∞

[π1(uv
iw)]k

ki|v|+|w|

[π2(uviw)]k
ki|v|+|w|

=
limi→∞

[π1(uv
iw)]k

ki|v|+|w|

limi→∞
[π2(uviw)]k
ki|v|+|w|

=
[π1(u)]k + [π1(v)]k

k|v|−1

[π2(u)]k + [π2(v)]k
k|v|−1

=
[π1(uv)]k − [π1(u)]k
[π2(uv)]k − [π2(u)]k

= U.

�

We now give some solvability results.

Theorem 8. The following problems are recursively solvable: given a DFA M , a
rational number α, and a relation C chosen from =, 6=, <,≤, >,≥, does there exist
x ∈ quok(L(M)) with x C α?

Proof. The following gives a procedure for deciding if x C α. First, we create a DFA
M ′ accepting the language LCα as described in Theorem 2 above. Next, using the
usual direct product construction, we create a DFA M ′′ accepting L(M) ∩ LCα.
Then, using breadth-first or depth-first search, we check to see whether there exists
a path from the initial state of M ′′ to some final state of M ′′. �

Theorem 9. The following problem is recursively solvable: given a DFA M , and
an integer k, is quok(L(M)) of infinite cardinality?

Note that this is not the same as asking whether L(M) itself is of infinite cardi-
nality, since a number may have infinitely many representations.

Proof. Without loss of generality, we may assume that the representations in M
are canonical (contain no leading [0, 0]’s). Define

γk(u, v) =
[π1(uv)]k − [π1(u)]k
[π2(uv)]k − [π2(u)]k

,

and let pref(L) denote the language of all prefixes of all words of L. Let n be the
number of states in M . We claim that quok(L(M)) is of finite cardinality if and
only if quok(L(M)) ⊆ T , where

(6) T = {quok(x) : x ∈ L(M) and |x| < n} ∪
{γk(u, v) : uv ∈ pref(L) and |v| ≥ 1 and |uv| ≤ n}.

One direction is easy, since if quok(L(M)) ⊆ T , then clearly quok(L(M)) is of
finite cardinality, since T is.

Now suppose quok(L(M)) ( T , so there exists some x ∈ L(M) with quok(x) 6∈ T .
Since T contains all words of L(M) of length < n, such an x is of length ≥ n. So the
pumping lemma applies, and there exists a decomposition x = uvw with |uv| ≤ n
and |v| ≥ 1 such that uviw ∈ L for all i ≥ 0. Now apply Lemma 3. If case (b)
of that lemma applies, then quok(x) = γk(u, v) ∈ T , a contradiction. Hence either
case (a) or case (c) must apply, and the lemma shows that quok(uviw) for i ≥ 0
gives infinitely many distinct elements of quok(L(M)).

To solve the decision problem, we can now simply enumerate the elements of T
and use Lemma 1. �
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Theorem 10. Given p/q ∈ Q≥0, and a DFA M accepting a k-automatic set of
rationals S, it is decidable if p/q is an accumulation point of S.

Proof. The number α is an accumulation point of a set of real numbers S if and
only if at least one of the following two conditions holds:

(i) α = sup(S ∩ I(−∞, α) ); (ii) α = inf(S ∩ I(α,∞) ).

By Theorem 2 we can compute a DFA accepting S′ := S ∩ I(−∞, α) (resp.,
S ∩ I(α,∞)). By [11, Thm. 2] we can compute supS′ (resp., inf S′). �
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[2] Cantor, G.: Über unendliche, lineare Punktmannigfaltigkeiten V. Math. Annalen 21, 545–591
(1883)

[3] Cobham, A.: On the base-dependence of sets of numbers recognizable by finite automata.

Math. Systems Theory 3, 186–192 (1969)
[4] Cobham, A.: Uniform tag sequences. Math. Systems Theory 6, 164–192 (1972)

[5] Even, S.: Rational numbers and regular events. IEEE Trans. Electr. Comput. 13, 740–741

(1964)
[6] Hartmanis, J., Stearns, R.E.: Sets of numbers defined by finite automata. Amer. Math.

Monthly 74, 539–542 (1967)

[7] Loxton, J.H., van der Poorten, A.J.: An awful problem about integers in base four. Acta
Arith 49, 193–203 (1987)
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