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an Automatic
Sequence?

Eric Rowland

A sequence s(n)n≥0 is called k-automatic if s(n)
is a finite-memory function of the base-k digits
of n. This means that some computer with only
finitely many possible states can compute s(n) for
any n by reading the base-k digits of n one at a
time (beginning with the least significant digit) and
following a transition rule that specifies the next
state of the computer as a function of both the
current state and the current digit being read. Each
possible state of the computer has an associated
output value, and the result of the computation
is the output value corresponding to the state
of the computer after it has read the final digit.
A computer of this kind is called an automaton,
hence the name “automatic sequence.”

For example, consider an automaton with only
two states, q1 and q2, that reads binary represen-
tations of integers. Suppose the automaton starts
in state q1 and performs transitions according to
the function δ : {q1, q2} × {0,1} → {q1, q2} given
by the following table.

δ 0 1
q1 q1 q2

q2 q2 q1

Let the output function τ : {q1, q2} → {a, b} be
given by τ(q1) = a and τ(q2) = b. The first few
terms of s(n)n≥0 are as follows.

n 0 1 2 3 4 5 6 7
s(n) a b b a b a a b
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For example, the standard binary representation
of n = 0 is the empty word; to compute s(0)
the automaton starts in state q1, performs no
transitions, and outputs τ(q1) = a. When fed the
binary digits of n = 1 = 12, the output of the
automaton is

s(1) = τ(δ(q1,1)) = τ(q2) = b.

For n = 2 = 102, we get

s(2) = τ(δ(δ(q1,0),1)) = τ(q2) = b,

etc. To compute the value of s(n), the automaton
performs approximately log2 n transitions.

The sequence

s(n)n≥0 = a, b, b, a, b, a, a, b, b, a, a, b, a, b, b, a, . . .

is known as the Thue–Morse sequence. It is 2-
automatic, since we are reading integers in base
2. Reading the least significant digit first is only
a convention, since reading in the other direction
turns out to give the same class of sequences.

It is illustrative to identify an automaton with a
directed graph. We create a vertex for each state,
and labeled edges encode the transition function
δ. An unlabeled edge identifies the initial state,
and each state is labeled with its output value. The
automaton for the Thue–Morse sequence is the
following:
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We can compute s(n) from the graph by starting
in q1 and following edges labeled with successive
binary digits of n.

Since an automaton has only finitely many
states, an automatic sequence is a sequence on
a finite alphabet; and among sequences on finite
alphabets, the class of automatic sequences is
quite fundamental. There is no class known with
more descriptive power and as many major prop-
erties. Automatic sequences generalize periodic
sequences in the sense that each periodic sequence
is k-automatic for all k ≥ 2. In particular, this im-
plies there is a “divisibility rule” for every integer
in every base.

Automatic Sequences in Combinatorics
The structure of a k-automatic sequence reflects
the recursive structure of the base-k digits of the
integers, so it is not surprising that automatic
sequences frequently arise from iteration. Suppose
we iteratively replace the letters a and b in a word
according to the morphism a → ab and b → ba.
Beginning with the word a, we obtain the sequence

a → ab
→ abba
→ abbabaab
→ abbabaabbaababba

...

which happens to consist of prefixes of the
Thue–Morse sequence. In the limit, we obtain the
Thue–Morse sequence itself, which is a fixed point
of this morphism. Indeed, any morphism on a
finite alphabet, where the image of each letter has
length k ≥ 2 and there is some letter a whose
image begins with a, has an infinite fixed point.
Cobham showed in 1972 that the letters of this
fixed point form a k-automatic sequence.

Fixed points of morphisms are a central tool in
combinatorics on words. A common question is
whether a given pattern is avoidable in arbitrarily
long words on a given alphabet. For instance, a
square is a word of the form w2 = ww , where
w is a nonempty word. Are squares avoidable on
a two-letter alphabet? Try to write down a long
square-free word; it doesn’t take long to determine
whether this is possible. In 1912 Thue showed that
cubes, i.e., words of the form w3, are avoidable
on a two-letter alphabet. His approach was to
use properties of the morphism a → ab, b → ba
to conclude that the Thue–Morse sequence is
cube-free.

In fact, Thue showed something stronger,
namely, that the Thue–Morse sequence is overlap-
free. An overlap is a word of the form wwc where

w is a nonempty word whose first letter is c. Over-
laps can be thought of as “(2+ ε)-powers.” Since
overlaps are avoidable on a two-letter alphabet but
squares are not, the exponent 2 is the repetition
threshold for a two-letter alphabet.

Extensions of Thue’s result have received much
attention. In 1972 Dejean determined that the
repetition threshold for a three-letter alphabet
is 7

4 . A fractional power is a partial repetition;

for example, abbabbab is the 8
3 -power (abb)8/3.

Dejean showed that it is not possible to avoid
fractional 7

4 -powers on a three-letter alphabet,
but it is possible to simultaneously avoid all
p
q -powers with p

q >
7
4 . The morphism she used

generates a 19-automatic sequence as opposed to
Thue’s 2-automatic sequence, but the broad idea
of the proof is the same. For a general n-letter
alphabet, Dejean’s conjecture for the repetition
threshold was finally confirmed through a number
of additional papers by multiple authors. The last
of these appeared only in 2011, nearly a century
after Thue’s results for a two-letter alphabet.

Automatic Sequences in Number Theory
Automatic sequences are also a useful tool in
number theory, where they arise from an algebraic
characterization of p-automatic sequences for
prime p, which Christol discovered in 1979. Amaz-
ingly, p-automatic sequences correspond precisely
to algebraic formal power series over finite fields
Fq of characteristic p. That is, a sequence s(n)n≥0

of elements in Fq is p-automatic if and only if∑
n≥0 s(n)xn is algebraic over Fq(x). For example,

if we rename the letters in the alphabet for the
Thue–Morse sequence, then the generating function
y =

∑
n≥0 s(n)xn of s(n)n≥0 = 0,1,1,0,1,0,0,1, . . .

satisfies

(1+ x)3y2 + (1+ x2)y + x = 0

in F2JxK.
An immediate application of this characteri-

zation is as follows. If S(n)n≥0 is a sequence of
integers such that

∑
n≥0 S(n)xn is algebraic over

Q(x), then projecting modulo p shows that∑
n≥0

(S(n)mod p)xn

is algebraic over Fp(x), and hence (S(n)mod p)n≥0

is p-automatic. Many sequences that arise in
enumeration settings have algebraic generating
functions, so their behavior modulo primes can be
assessed in this way. For example, the nth Catalan

number C(n) = 1
n+1

(
2n
n

)
is the coefficient of xn in

one of the solutions of xy2 − y + 1 = 0, so for
any prime p we can produce an automaton for
computing C(n)mod p. Here is an automaton that
computes C(n)mod 3 when fed the base-3 digits
of n:
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Now consider the more general situation where
we reduce an algebraic sequence modulo a prime
power pα. Since Z/(pαZ) is not a field for α ≥ 2,
we can’t use Christol’s algebraic characterization
to conclude that (S(n)mod pα)n≥0 is p-automatic.
However, Furstenberg showed that one can realize
an algebraic sequence as the diagonal of a rational
power series in two variables. The diagonal of a
rational function lends itself to certain analyses,
and it turns out to be good for computing an
automaton for a sequence modulo pα. Namely,
there is an injection of the set of states of
the automaton into the set of polynomials in
(Z/(pαZ))[x, y] with some bounded degree. Since
this set is finite, the set of states is also finite and
can be computed by polynomial arithmetic. The
sequence of Catalan numbers forms the diagonal
of

(y + 1)
(
2xy2 + xy + x− 1

)
xy2 + 2xy + x− 1

.

We can use this function to compute an automaton
for C(n)mod pα and obtain congruence informa-
tion about the Catalan numbers. For example,
C(n) 6≡ 3 mod 4 for all n ≥ 0 simply because the
automaton we compute does not output 3. Similar
results for other sequences are completely routine
to discover and prove [4].

Since this method works not just for algebraic
sequences but more generally for diagonals of
rational functions, it applies to many nonalgebraic
combinatorial sequences as well as sequences that
have arisen in number theoretic contexts. For

example, the numbers A(n) =
∑n
k=0

(
n
k

)2(n+k
k

)2
,

which Apéry used to prove the irrationality of ζ(3),
form the diagonal of

1
(1− x1 − x2)(1− x3 − x4)− x1x2x3x4

,

so (A(n)mod pα)n≥0 is p-automatic. For α = 1
this also follows from a result of Gessel, who
proved that, if we write n = nl · · ·n1n0 in base p,
then A(n) ≡

∏l
i=0A(ni) mod p. For pα = 7 we get

the following particularly symmetric automaton

which computes A(n)mod 7. The loops labeled
0,6 reflect that A(0) ≡ A(6) ≡ 1 mod 7.

If S(n)n≥0 is the diagonal of a rational power
series, then S(n)n≥0 is holonomic, meaning that
it satisfies a linear recurrence with coefficients
that are polynomials in n. Not every holonomic
sequence is the diagonal of a rational power series;
for example, n!n≥0 grows too quickly. However,
a conjecture of Christol [2] implies that every
holonomic sequence of integers that grows at
most exponentially is the diagonal of a rational
function. If this conjecture is true, then essentially
every sequence that arises in combinatorics is
p-automatic when reduced modulo pα.
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