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Abstract

The lexicographically least square-free infinite word on the alphabet
of non-negative integers with a given prefix p is denoted L(p). When p is
the empty word, this word was shown by Guay-Paquet and Shallit to be
the ruler sequence. For other prefixes, the structure is significantly more
complicated. In this paper, we show that L(p) reflects the structure of the
ruler sequence for several words p. We provide morphisms that generate
L(n) for letters n = 1 and n ≥ 3, and L(p) for most families of two-letter
words p.

1 Introduction

A word is square-free if it contains no block of letters that occurs twice consecu-
tively. In 2009, Guay-Paquet and Shallit [4] established the structure of the lex-
icographically least square-free infinite word on the alphabet N := {0, 1, 2, . . . }.

∗This work was done in the 2021 Polymath Jr. program and was partially supported by
NSF award DMS-2113535.
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This word is 0102010301020104 · · · . Its letters comprise the ruler sequence [9,
A007814], and it is the fixed point ρ∞(0) of the ruler morphism ρ defined by
ρ(n) = 0 (n+ 1).

However, this result is not robust; a minor variation produces words that
are quite different. Given a word w, let L(w) denote the lexicographically least
infinite word on N beginning with w whose only square factors are contained in
the prefix w. In particular, if w is square-free, then so is L(w). If w is infinite,
then L(w) = w. For example,

L(1) = 10120102012021012010201203010201 · · · [9, A356677],

L(2) = 20102012021012010201202102010210 · · · [9, A356678],

and

L(33) = 33010201030102012021012010201202 · · · [9, A356679].

Unlike L(ε) = ρ∞(0), the letters in these words do not alternate between 0s and
positive integers. Moreover, the letters 3, 4, 5, . . . take much longer to appear,
and there is no clear pattern for these words, as in the case for the ruler sequence.

In this paper we determine the structure of L(w) for certain simple words
w. Our main results are that L(1) and L(n) for n ≥ 3 reflect the structure of
L(ε) as follows.

Theorem 1. There exists a morphism α and a word Y1 with length 5177 such
that L(1) = Y1 α(L(ε)).

Theorem 2. For each n ≥ 3, there exists a finite word Yn such that L(n) =
Yn ρ(α(L(ε))), where α is the morphism in Theorem 1.

These results imply that the suffix α(L(ε)) and the related suffix ρ(α(L(ε)))
are two attractors for infinite square-free extensions of words on N. We have

α(L(ε)) = 01020301201020120210120102012023 · · · [9, A356676].

The structure of L(2) appears to also reflect the structure of L(ε) but, sur-
prisingly, appears not to be related to the morphism α. Instead, we give a
morphism γ in Section 4.3 for which we conjecture the following.

Conjecture 3. There exists a morphism γ such that L(2) = 2γ(L(ε)).

In Corollary 44, we show that L(012) = 01201 limn→∞ ρ−1(α(n)) where α
is the morphism described above. We also describe L(p) for many two-letter
words. For example, we show that L(nn) = nL(n) for all letters n. On the
other hand, we do not have conjectures for the structures of L(1n) when n > 1
and L(2n) when n ̸∈ {0, 2}. For example we have

L(12) = 12010201202101201020120212010201 · · · [9, A356680],

L(13) = 13010201030102012021012010201202 · · · [9, A356681],

L(21) = 21012010201202101201020121012010 · · · [9, A356682],

L(23) = 23010201030102012021012010201202 · · · [9, A356683].
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Section 2 contains the main definitions and some preliminary results we will
use to prove Theorems 1 and 2. Section 3 establishes the structure of finite
words T (n) for which Yn = nT (n)A for a constant word A when n ≥ 3. We see
in Section 4.2 that T (n) is the only component of L(n) that depends on n. In
Section 4 we give explicit constructions of α and the words Yn, and we prove
Theorems 1 and 2. Unsurprisingly, the proofs are fairly technical.

In Section 5 we give two conditions under which L(uv) = uL(v). For exam-
ple, we show that L(n1n2) = n1L(n2) for all n1 ≥ 3 and n2 ≥ 3. We use this to
describe the structure of L(p) for several families of two-letter words p. Finally,
in Section 6, we study the inverse problem of finding a prefix p that induces a
given finite square-free word w under L. We show that this can always be done
and present an algorithm that computes a prefix p such that pw is a prefix of
L(p). Section 7 is a glossary of all of the functions, morphisms, and constants
defined in the paper.

This work was motivated by results of several papers [7, 6, 8] studying the
lexicographically least word on N that avoids a

b -powers, for various rational
numbers in the interval 1 < a

b < 2. These words exhibit a remarkable diversity
of behaviors. Some of these words (for example, when a

b = 24
17 [6, Figure 4

on page 36]) alternate between two different modes before settling into their
long-term behavior, suggesting that there may be multiple attractors in the
dynamical systems that generate them. The current paper is the first explo-
ration of the set of attractors for the alphabet N. By varying the prefix, we
show there are multiple attractors for square-free words. In contrast, on a bi-
nary alphabet there are patterns with only one attractor; Allouche, Currie, and
Shallit [2] showed that the lexicographically least overlap-free word on {0, 1}
with a fixed prefix, if it exists, always has a suffix that is a suffix of 10010110 · · ·
(the complement of the Thue–Morse word).

Frequently in this paper, we use computations to show that a particular
finite word possesses a certain property. Often, this involves verifying that the
word is square-free. As an example, in the proof of Lemma 7, we verify that
the word ψ1(010) is square-free. These words can easily be computed from their
definitions. All computations in this paper that verify that a word is square-free
can be done quickly using the Main–Lorentz algorithm described in their 1985
paper [5].

We sometimes require the computation of finite prefixes of words L(w). For
example, the word Y1 is defined as the 5177-letter prefix of L(1). These compu-
tations can be completed quickly using the following simple greedy algorithm:
To find the next letter of L(w) after the prefix wv, check whether wvn has a
square suffix for non-negative integers n, increasing from zero. Then the least
n for which wvn has no square suffix is the next letter of L(w). If w contains
a square, we test all even-length suffixes of wvn. If w is square-free, then we
can use a more efficient variation of the Main–Lorentz algorithm [5] that only
searches for squares that are suffixes. This variation is easiest to implement by
first reversing the string and then using the algorithm described in their paper
with “Step 3” altered so that only the first block of length l is examined.
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2 Definitions and preliminary results

We assume the reader is familiar with basic definitions and notation regarding
words and morphisms. See the survey by Allouche [1] for a short introduction.
All words in the paper are words on the alphabet N.

We say that v is a factor of w if w = xvy for some words x, y. If v is a factor
of w, we also say that v occurs in w and w contains v. A square is a nonempty
word of the form yy. A word is square-free if it contains no square factors.

We index letters in a word beginning with 0, and we use Python notation
to extract factors: Suppose a word w has length ℓ and is written as a sequence
of letters w = w0w1w2 · · ·wℓ−2wℓ−1. If 0 ≤ i ≤ j ≤ ℓ − 1, then w[i] := wi

and w[i : j] := wiwi+1 · · ·wj−1, with “default values” for i and j being 0 and ℓ,
respectively. If i = j, then w[i : j] = ε. Negative values index letters from the
end of the word. For example, if w = hydrant, then

w[3 : 6] = ran = w[3 : −1]

w[4 :] = ant = w[−3 :]

w[: 5] = hydra = w[: −2].

Note also that w[: 0] = ε for any word w.

Definition. A word w is even-grounded if wi = 0 for even i and wi ̸= 0 for odd
i. A word w is odd-grounded if wi = 0 for odd i and wi ̸= 0 for even i. A word
is grounded if it is even-grounded or odd-grounded.

For example, the words 010 and 0102 are even-grounded, 301 and 3010 are
odd-grounded, and the words 0120 and 0100 are not grounded.

Definition. The ruler morphism ρ : N∗ ∪ Nω → N∗ ∪ Nω is defined by ρ(n) =
0(n+ 1) for letters n ∈ N.

Notation. We will denote by Rn the prefix of the ruler sequence up to the first
occurrence of the letter n, i.e. Rn = ρn(0) = L(ε)[: 2n]. For example, R0 = 0,
R1 = 01, R2 = 0102, and so on.

Notation. For a nonempty finite word w, we define w+, the successor of w, to be
the word that is identical to w except for the last letter, which is increased by 1.
For example, if w = 0102 then w+ = 0103. Formally, w+ = w[: −1](w[−1] + 1).

Definition. Let ϕ be a morphism.

• ϕ is non-erasing if ϕ(k) ̸= ε for all letters k.

• Let ∆ be a set of words. We say that ϕ is square-free over ∆ if ϕ is non-
erasing and ϕ(w) is square-free for all square-free words w ∈ ∆. We say
that ϕ is square-free if ϕ is square-free over N∗ ∪ Nω.

• ϕ is letter-injective if, given letters k and ℓ, ϕ(k) = ϕ(ℓ) implies k = ℓ.
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Definition. Given two words u and v, we say that u is lexicographically less
than v and we write u ≺ v if there is an index i such that u[: i] = v[: i] and
u[i] < v[i] as letters. It can be seen that ≺ is a partial ordering on N∗∪Nω. The
only case when u and v are not comparable by ≺ is when one word is a prefix
of the other. We can also see that if w is a nonempty word of finite length and
v ≺ w+, then either v ≺ w or w is a prefix of v.

Definition. Given words w and u, we say that u is irreducible in wu if for all
words s ≺ u, s introduces a square in ws. That is, there is a square in ws that
ends at a letter in s.

Notice that if u is irreducible in wu, it can still introduce a square. In this
case, u+ is irreducible in wu+.

Example. Consider w = 0102010, u = 23, and v = 301. Any word y beginning
with a 0, 1, or 2 introduces a square in wy, so u is irreducible and also introduces
a square in wu. Thus, u+ = 24 is also irreducible. The word v = 301 does not
introduce a square, but every word lexicographically less than v either begins
with 0, 1, or 2, or includes a square. So v is irreducible, but v+ = 302 is not.

Definition. We say that p generates ps if L(p) = L(ps). In other words, L(p)
starts with ps.

The main results of this paper, that L(1) = Y1α(L(ε)) and L(n) = Ynρ(α(L(ε)))
for n ≥ 3 can be restated as 1 generates Y1α(L(ε)), and n generates Ynρ(α(L(ε)))
for n ≥ 3.

Remark 4. To prove that a square-free word p generates another word w = ps,
we must show that w is square-free and that s is irreducible in w = ps.

In particular, we have the useful property that if p generates w = ps and
uw is square-free for another word u, then up generates uw. The square-free
condition is known by assumption, and the fact that s is irreducible in w = ps
implies that s is irreducible in uw = ups.

One common application of this property is when w = L(p). Then if uL(p) is
square-free, we get L(up) = L(uL(p)) = uL(p). Or in other words, up generates
uL(p).

Example. The above remark is often used implicitly in this paper. For example
in Lemma 11, we prove that for n ≥ 1, ψ1(n) generates ψ1(n)202101. To do
this, we first show that ψ1(n)202101 is square-free and that 2 is irreducible in
ψ1(n)2. This proves that ψ1(n) generates ψ1(n)2.

We then show that ψ1(n)2 has suffix R2R12, and via computation show
that R2R12 generates R2R1202101. Letting p = R2R12, s = 02101, and u
be the word for which up = ψ1(n)2, we have that p generates ps, and ups =
ψ1(n)202101 is square-free. So Remark 4 says that up = ψ1(n)2 generates
ups = ψ1(n)202101.

We now have that ψ1(n) generates ψ1(n)2, and ψ1(n)2 generates ψ1(n)202101.
By definition, this means that L(ψ1(n)) = L(ψ1(n)2) = L(ψ1(n)202101), so
ψ1(n) generates ψ1(n)202101.
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Notation. For any word w, max(w) denotes the maximum letter value in w if
it exists.

The remainder of this section introduces the notion of chunks which will be
key in Section 3 to prove Theorem 24 regarding the structure of a certain prefix
of L(n) and in Section 4 to prove Theorem 28 related to the square-freeness of
the morphism α, determining the structure of L(1).

Given a morphism ϕ and a word w = w0w1w2 · · · we can write ϕ(w) as

ϕ(w) = [ϕ(w0)] [ϕ(w1)] [ϕ(w2)] · · · ,

where we use square brackets to delineate the contributions of each individual
letter of w. A factor of ϕ(w) that arises as the image ϕ(k) of the letter k under
ϕ is a chunk or, more specifically, a k-chunk. For example, consider the ruler
morphism ρ and the word 0121. We would break ρ(0121) into chunks as

ρ(0121) = [01] [02] [03] [02].

Each factor 02 is a 1-chunk.
Sometimes, when we take a particular occurrence of a factor of ϕ(w), we

find that the factor starts or ends partway through a chunk. For example
ρ(0121)[1 : 6] can be written as

ρ(0121)[1 : 6] = 1] [02] [03] [0.

We refer to 1] and [0 as partial chunks. 1] is the initial partial chunk and [0 is
the final partial chunk.

In this paper, we frequently consider words of the form ϕ(w), and then
characterize the possible locations of certain factors of ϕ(w) with respect to its
chunks. For example, in Lemma 30, we show that for any grounded square-free
word w, the constant word E can only occur in α(w) as a prefix or a suffix of
a 0-chunk. This is related to the morphism property that ϕ locates words of
length ℓ introduced by Pudwell and Rowland [6], which restricts the possible
starting index for a word of length ℓ, relative to the chunks in ϕ(w). It is also
related to the synchronization point of a word x introduced by Cassaigne [3]
which describes a point in a word x with respect to a morphism ϕ that must
occur at a chunk boundary whenever x occurs in ϕ(w).

Definition. Given a word w and a morphism ϕ, we say that two (possibly
partial) chunks in ϕ(w)[i : j] come from the same letter to mean that both
chunks arise as images of the same letter in w. For example, in ρ(0121)[1 :
6] = 1][02][03][0, the first whole chunk, [02], and the final partial chunk, [0,
come from the same letter, 1. If a word v occurs twice in ϕ(w), we say that
the occurrences have the same chunk decomposition if every whole chunk in
one occurrence corresponds to a whole chunk in the other occurrence and both
chunks come from the same letter.
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Example. Consider the morphism ϕ : N∗ ∪ Nω → N∗ ∪ Nω defined by

ϕ(n) =


0 if n = 0

01 if n = 1

n− 1 if n ≥ 2.

The single occurrence of v = 103 in ϕ(2041) = [1] [0] [3] 01 has the same chunk
decomposition as its occurrence in ϕ(2204) = 1 [1] [0] [3]. On the other hand,
w = 01 in ϕ(01) = 0 [01] does not have the same chunk decomposition as its
occurrence in ϕ(024) = [0] [1] 3.

In ρ(01012), we consider the square 1020 1020:

ρ(01012) = [0 (1][02][0) (1][02][0) 3].

The two halves of the square have the same chunk decomposition because in
both, 02 is a whole 1-chunk and there are no other whole chunks. The two
initial partial chunks come from the same letter because they are both part
of 0-chunks. The two final partial chunks do not come from the same letter
because the final partial chunk of the first half is part of a 0-chunk, and the
final partial chunk of the second half is part of a 2-chunk.

Consider a morphism ϕ where ϕ(0) = 123, and ϕ(1) = 13. Then, ϕ(010) =
[12(3][1)(3][1)23]. In the square 3131, both halves vacuously have the same
chunk decomposition since there are no whole chunks. But neither their initial
nor final partial chunks come from the same letter.

The following theorem is used frequently in this paper to show that a mor-
phism is square-free.

Theorem 5. Let ϕ be a letter-injective morphism such that ϕ(ℓ) is square-free
for all letters ℓ. Suppose w is a word such that ϕ(w) contains a square yy for
which the following three properties hold.

1. Each half of the square contains at least one whole chunk.

2. The two halves of the square have the same chunk decomposition.

3. If either half has a partial chunk, then either their initial partial chunks
or their final partial chunks come from the same letter in w.

Then w contains a square.

Proof. By the first and second conditions, the corresponding whole chunks in
both halves come from the same letters in w. So there is a nonempty factor u of
w that yields all whole chunks in both halves. That is, we can write the square
as

yy = (b] [ϕ(u)] [c) (b] [ϕ(u)] [c)

where b] and [c are possibly empty partial chunks.
If there are no partial chunks (b = c = ε), then yy = [ϕ(u)][ϕ(u)] and uu is

a square factor of w.
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Now, suppose there is a partial chunk in either half. Then since the halves
have the same chunk decomposition, there must be an initial and final partial
chunk in both halves (neither b nor c is empty). Let a and d be the smallest
words that complete the partial chunks of yy. That is, ϕ(w) has the factor
[a(b] [ϕ(u)] [c)(b] [ϕ(u)] [c)d] = ayyd. Since ϕ is letter-injective, ϕ−1 is well
defined on chunks. The third condition says that either ϕ−1(ab) = ϕ−1(cb) or
ϕ−1(cb) = ϕ−1(cd). In the first case, ϕ−1(ab)uϕ−1(cb)u is a square factor of w.
In the second case, uϕ−1(cb)uϕ−1(cd) is a square factor of w.

As a corollary to this theorem, suppose Γ is a family of square-free words, and
ϕ is a letter-injective morphism with ϕ(ℓ) square-free for all letters ℓ. For any
word w ∈ Γ, ϕ(w) cannot contain a square that possesses all three properties
in Theorem 5, or else w would contain a square. So we can prove that ϕ is
square-free over Γ by showing that for all w ∈ Γ, if ϕ(w) contains a square,
then it contains a square with these three properties. In this paper, we use
this technique to show that the morphisms ψ1, ψ2, and α are square-free over
grounded words.

3 A certain prefix of L(n)

For all n ≥ 1, it is clear that L(n) always starts with the letter n followed by a
prefix of the ruler sequence L(ε). In this section, we show that for n ≥ 3, L(n)
has prefix nT (n) which has length exponential in n. In Section 4.2 we will show
that this is the only part of L(n) that depends on n.

3.1 The morphism ψ1

We begin by showing that L(n) has a shorter prefix, nP0(n)P1(n), which is
proved in Theorem 14. Next we define the words P0(n), P1(n) and the morphism
ψ1.

Definition. For n ≥ 0, let P0(n) be the maximum prefix of the ruler sequence
such that nP0(n) is a prefix of L(n). Define the morphism ψ1 : N∗ → N∗ by

ψ1(n) =

{
202101 if n = 0,

(n+ 1)P0(n+ 1) otherwise,

and for n ≥ 3 define
P1(n) = ψ1(P0(n− 1)).

For n ≥ 3, after the word L(n) deviates from the ruler sequence prefix,
we will show that it continues with the word P1(n). These definitions can be
referenced in the glossary, Section 7.

Remark 6. Note that P0(0) = ε. Also, it is not hard to see that the length of
P0(n) is 2

n+1 − 2, hence for all n we have

P0(n) = Rn+1[: −2] = RnRn[: −2] = RnRn−1 · · ·R3R2R1.

8



And for n ≥ 1,
P0(n) = RnP0(n− 1).

By repeated application of this argument, for 1 ≤ k ≤ n, we have that P0(n)
has suffix P0(k).

We would like to show that ψ1 is square-free over grounded words, since that
will imply that P1(n) is square-free. The next three lemmas describe some of
the important behavior of ψ1 over grounded square-free words.

Lemma 7. Let n ≥ 1. Then ψ1(0n0) is square-free.

Proof. We can verify computationally that ψ1(010) is square-free. So let n ≥ 2
and suppose there is a square yy in

ψ1(0n0) =
[
202101

][
(n+ 1)P0(n+ 1)

][
202101

]
.

Since (n+ 1)P0(n+ 1) is a prefix of L(n+ 1), ψ1(n) is square-free for all n. So
yy lies over at least one of the chunk boundaries.

In the first chunk boundary we find the word 1(n + 1), and in the second
the word 12. Since n + 1 ≥ 3 and ψ1(n) is grounded, these words appear
nowhere else in ψ1(0n0). Therefore, neither chunk boundary can be completely
contained in y. This means that yy must be a factor of ψ1(0n) or ψ1(n0) and
each occurrence of y must be completely contained in a different chunk. Every
prefix of ψ1(n) begins with n + 1 ≥ 3 but no suffix of ψ1(0) does, and every
suffix of ψ1(n) is grounded and ends with a 1 which is not true for any prefix of
ψ1(0). Therefore, such a square cannot exist.

Lemma 8. Let n > k ≥ 0. Then neither of ψ1(n) and ψ1(k) is a factor of the
other.

Proof. From the definition, it is clear that since n > k, |ψ1(n)| > |ψ1(k)|, so
ψ1(n) cannot be a factor of ψ1(k). If k = 0, then ψ1(k) is not grounded but
ψ1(n) is. Thus, assume n > k > 0. Then since ψ1(n) = (n + 1)P0(n + 1) =
(n+1)Rn+2[: −2], it is sufficient to show that ψ1(k) = (k+1)Rk+2[: −2] cannot
occur in Rn+2.

Since Rn+1 = RnR
+
n for all n, we have that

Rn+2 = Rk+2R
+
k+2Rk+2R

++
k+2Rk+2R

+
k+2 · · ·Rk+2R

++···+
k+2

= R∗
k+2R

∗
k+2 · · ·R∗

k+2,

where ∗ represents the application of zero or more +’s according to the ruler
sequence pattern.

The largest letter in Rk+2[: −2] is k + 1 and the last letter of each R∗
k+2 is

at least k + 2. So every occurrence of Rk+2[: −2] in R∗
k+2R

∗
k+2 · · ·R∗

k+2 must
be as a prefix of an R∗

k+2. This means that any occurrence of Rk+2[: −2] in
Rn+2 is either a prefix of Rn+2 or is preceded by a letter that is at least k + 2.
Therefore, (k + 1)Rk+2[: −2] can never occur in Rn+2, and ψ1(k) cannot occur
in ψ1(n) which proves the result.
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Lemma 9. Let w be a grounded square-free word. Then for ℓ ≥ 0, every
occurrence of ψ1(ℓ) in ψ1(w) is a ℓ-chunk.

Proof. It is not hard to see that the word 21 can only occur in ψ1(w) in the
middle of 0-chunks. Thus, 202101 occurs in ψ1(w) only as a 0-chunk.

Suppose ℓ ≥ 1. Then ψ1(ℓ) = (ℓ+1)P0(ℓ+1) = (ℓ+1)Rℓ+1Rℓ+1[: −2] which
is odd-grounded. For n ≥ 0, ψ1(n) begins and ends with a non-zero letter, so
any word lying over a chunk boundary in ψ1(w) cannot be grounded. Therefore,
every occurrence of ψ1(ℓ) in ψ1(w) must be totally contained in some k-chunk
where k ≥ ℓ. By Lemma 8 ψ1(ℓ) cannot be a factor of ψ1(k) when k > ℓ, so
ψ1(ℓ) can only occur as an ℓ-chunk.

Proposition 10. ψ1 is square-free over grounded words.

Proof. Suppose w is a grounded square-free word and that ψ1(w) contains a
square yy. From its definition, ψ1 is letter injective and ψ1(n) is square-free
for all n. Also, Lemma 9 implies that both halves of yy have the same chunk
decomposition. We will show that each half of the square contains a whole
chunk, and that if either half contains a partial chunk, then the final partial
chunk of both halves comes from the same letter. Then Theorem 5 will imply
that w contains a square, which is a contradiction.

Suppose neither half of the square contains a whole chunk. Then the whole
square contains no more than one whole chunk. By Lemma 7, ψ1(0n0) is square-
free, so yy must be a proper factor of ψ1(n0k) for n, k > 0, n ̸= k. The factor 21
only occurs in the middle of 0-chunks, so the square in ψ1(n0k) has its center at
the 21 in the 0-chunk. The square cannot be totally contained in the 0-chunk,
so the second half of the square begins with 101 which cannot occur in the first
half because ψ1(n) = (n+ 1)Rn+2[: −2]. This is a contradiction so at least one
half of the square contains a whole chunk. Since both halves have the same
chunk decomposition, both halves contain a whole chunk.

Suppose either half contains a partial chunk. Then since the halves have
the same chunk decomposition, they must both end with a partial chunk. The
final partial chunks begin with the same letter, so they must be equal chunks
or one of them must be a 0-chunk. But since the halves have the same chunk
decomposition and contain whole chunks, their last whole chunk is equal. So the
final partial chunks are either both 0-chunks or both equal nonzero chunks.

The next three lemmas are used to prove the irreducibility condition in
Theorem 14.

Lemma 11. Let n ≥ 1. Then ψ1(n) generates ψ1(n0).

Proof. Since n0 is square-free and grounded, ψ1(n0) is square-free by Proposi-
tion 10, so we only need to show that ψ1(0) is irreducible in ψ1(n0) = ψ1(n)202101.
We will first show that 2 is an irreducible suffix of ψ1(n)2, and then that 02101
is an irreducible suffix of ψ1(n)202101.

Recall that ψ1(n) = (n+1)P0(n+1) = (n+1)Rn+1[: −1](n+1)Rn+1[: −2].
From the structure of Rn, we know that Rn+1 has suffix 010(n+1) when n ≥ 1.
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So ψ1(n)0 = (n + 1)Rn+1[: −1](n + 1)Rn+1[: −1] which is a square. The last
letter of ψ1(n) is a 1, so ψ1(n)1 has square suffix 11. Therefore, 2 is irreducible at
the end of ψ1(n)2. Since ψ1(n) ends with R2R1, then ψ1(n)2 ends with R2R12.
We can computationally verify that R2R12 generates R2R1ψ1(0), which implies
the result by using Remark 4.

Lemma 12. For 0 ≤ k ≤ n, k+1 is irreducible at the end of ψ1(nRk[: −1])(k + 1).

Proof. Let 0 ≤ m ≤ k, we will show that wm := ψ1(nRk[: −1])m has a square
suffix. If k = 0, then m = 0 and ψ1(nRk[: −1]) = ψ1(n). Then ψ1(nRk[:
−1])m = ψ1(n)0 which has a square suffix by Lemma 11.

Now note that for k ≥ 1, the last letter of Rk[: −1] is 0 and ψ1(0) = 202101,
so wm has a square suffix for m < 2.

Now assume 2 ≤ m ≤ k. By definition ψ1(n) = (n + 1)P0(n + 1), and
by Remark 6, P0(n + 1) has suffix P0(m). Hence, if m = k, wm has suffix
P0(m)ψ1(Rm−1[: −1])m.

On the other hand, if m < k it is easy to see that nRk[: −1] has suffix
mRm[: −1]. By definition ψ1(m) = (m+1)P0(m+1), and sincem ≥ 2, Remark 6
implies that P0(m+1) has suffix P0(m). So wm has suffix P0(m)ψ1(Rm[: −1])m
for any 2 ≤ m ≤ k. Finally note that

P0(m)ψ1(Rm[: −1])m = P0(m)ψ1(Rm−1[: −1])ψ1(m− 1)ψ1(Rm−1[: −1])m

= P0(m)ψ1(Rm−1[: −1])mP0(m)ψ1(Rm−1[: −1])m,

which is a square.

Lemma 13. For n ≥ 1 and 0 ≤ k ≤ n, ψ1(n) generates ψ1(nRk).

Proof. Since k ≤ n we know that nRk is square-free and grounded, so Propo-
sition 10 implies that ψ1(nRk) is square-free. It is now sufficient to show that
ψ1(Rk) is irreducible in ψ1(nRk).

We prove this inductively over n. The base case n = 1 implies that k = 0 or
k = 1. We can computationally verify that ψ1(1) generates ψ1(1R0) = ψ1(10)
and that ψ1(1) generates ψ1(1R1) = ψ1(101).

Fix n > 1 and suppose the result holds for all 1 ≤ n0 < n. That is,

ψ1(Rk) is irreducible in ψ1(n0Rk) for all 0 ≤ k ≤ n0 and 1 ≤ n0 < n. (i)

We will show that the result holds for n0 = n. That is, ψ1(Rk) is irreducible in
ψ1(nRk) for all 0 ≤ k ≤ n.

We can prove this intermediate step by a second induction, now over k. The
base case is k = 0, which holds by Lemma 11 since R0 = 0. Now fix k > 0 and
suppose

ψ1(Rk0
) is irreducible in ψ1(nRk0

) for all 0 ≤ k0 < k (ii)

We will show that the result holds for k0 = k. That is, ψ1(Rk) is irreducible in
ψ1(nRk).

We have that ψ1(nRk) = ψ1(nRk−1Rk−2 · · ·R2R1R0k). By the second in-
ductive hypothesis (ii), ψ1(Rk−1) is irreducible in ψ1(nRk−1). The last letter
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of Rk−1 is k− 1, so the first inductive hypothesis (i) says that ψ1(Rk−2) is irre-
ducible in ψ1((k−1)Rk−2) and so ψ1(Rk−1Rk−2) is irreducible in ψ1(nRk−1Rk−2).
Repeating this argument shows that ψ1(Rk−1Rk−2 · · ·R2R1R0) = ψ1(Rk[: −1])
is irreducible in ψ1(nRk[: −1]). Lemma 12 implies that k + 1 is irreducible in
ψ1(nRk[: −1])(k + 1). And ψ1(k) = (k + 1)P0(k + 1) is a prefix of L(k + 1) by
the definition of P0, so k+1 generates ψ1(k), meaning that ψ1(k) is irreducible
in ψ1(nRk[: −1])ψ1(k) = ψ1(nRk), which proves the result.

In particular, this lemma implies that for all n ≥ 1, ψ1(n) generates ψ1(nRn).

Theorem 14. For all n ≥ 3, let P1(n) = ψ1(P0(n− 1)). Then for n ≥ 3, L(n)
has prefix nP0(n)P1(n).

Proof. Note that nP0(n)P1(n) = ψ1((n−1)P0(n−1)). Then, since (n− 1)P0(n− 1)
is square-free and grounded, Proposition 10 implies that nP0(n)P1(n) is square-
free. It remains to show that P1(n) = ψ1(P0(n − 1)) = ψ1(Rn−1Rn−1[: −2]) is
irreducible in nP0(n)P1(n). Indeed, note that

nP0(n)P1(n) = ψ1((n− 1)P0(n− 1)) = ψ1((n− 1)Rn−1Rn−1[: −2]).

Lemma 13 implies that ψ1(n − 1) generates ψ1((n − 1)Rn−1), which has suffix
ψ1(n− 1). Hence, by applying Lemma 13 a second time we obtain in particular
that ψ1(Rn−1[: −2]) is irreducible in ψ1((n − 1)Rn−1[: −2]), and so it is also
irreducible in

nP0(n)P1(n) = ψ1((n− 1)Rn−1Rn−1[: −2]).

Therefore, the whole factor P1(n) is an irreducible suffix of nP0(n)P1(n).

Remark 15. Using Remark 6, for all n ≥ 4 we have

P1(n) = ψ1(P0(n− 1))

= ψ1(Rn−1[: −1](n− 1)Rn−1[: −2])

= ψ1(Rn−1[: −1])ψ1(n− 1)ψ1(P0(n− 2))

= ψ1(Rn−1[: −1])nP0(n) P1(n− 1)

= ψ1(Rn−1[: −1])nRnP0(n− 1)P1(n− 1),

so P1(n) has nP0(n− 1)P1(n− 1) as suffix.
Repeated application of this argument implies that for all 2 ≤ k < n, the

word P1(n) has the suffix (k + 1)P0(k)P1(k).

3.2 The morphism ψ2

For all n ≥ 3 after the prefix given by the previous result, L(n) continues with
another sequence, P2(n) defined as follows.
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Definition. Define the morphism ψ2 : N∗ → N∗ by

ψ2(0) = 2021020102101201020120210120102013010201030102012021012010201

2021013010201030102012021012010201202301020103010201202101201

0201203010201030102030103020102030102010301020301030201202101

2010201202101202,

ψ2(n) = (n+ 2)P0(n+ 2)P1(n+ 2), if n > 0

and let
P2(n) = ψ2(P0(n− 2))

which can be referenced in Section 7.

In particular, we note that for n ≥ 1, ψ2(n) = ψ1((n+1)P0(n+1)) = ψ2
1(n),

but ψ2(0) ̸= ψ2
1(0). Similarly to ψ1, we would like to show that ψ2 is square-free

over grounded words because that will imply that nT (n) = ψ2((n−2)P0(n−2))
is square-free. The next four lemmas prove some properties of ψ2 that are used
to prove this condition.

Lemma 16. Let n ≥ 1. Then ψ2(n0) is square-free.

Proof. We can verify computationally that ψ2(10) is square-free. So let n ≥ 2
and suppose there is a square yy in ψ2(n0). Since ψ2(n) = ψ1((n+1)P0(n+1)),
ψ2(n) is square-free by Proposition 10. This implies that yy overlaps both
chunks. We have that ψ2(n) ends with

P1(n+ 2) = ψ1(P0(n+ 1)) = ψ1(Rn+2[: −2]) = ψ1(Rn+1Rn · · ·R3R2R1).

Since n ≥ 2, this ends with ψ1(3R2R1). We can computationally verify that
ψ1(3R2R1)ψ2(0) is square-free which means that any square in ψ2(n0) must
contain all of ψ1(3R2R1)][2 at the chunk boundary. Since ψ1(3) contains 4’s,
the square must contain 4’s.

Let k be the largest letter in the square yy. We know that 4 ≤ k ≤ n + 2
since max(ψ2(n0)) = n+2. Since max(ψ2(0)) = 3, all occurrences of k in ψ2(n0)
are in the n-chunk. From above, ψ2(n) ends with ψ1(Rm[: −2]) for m ≤ n+ 2.
We consider two cases:

Case 1: k < n+ 2. Since k + 1 ≤ n+ 2, ψ2(n) ends with

ψ1(Rk+1[: −2]) = ψ1(Rk[: −1]) ψ1(k) ψ1(Rk[: −2])

= ψ1(Rk[: −1]) (k + 1)Rk+1[: −1](k + 1)Rk+1[: −2] ψ1(Rk[: −2])

which contains the last two occurrences of k+1 in ψ2(n). Since k is the largest
letter in the square, yy must be contained in the suffix of ψ2(n0) after the last
occurrence of k + 1 which is

Rk+1[: −2] ψ1(Rk[: −2]) ψ2(0)

= RkRk[: −2] ψ1(Rk−1Rk−1[: −2]) ψ2(0)

= Rk[: −1] k Rk[: −2] ψ1(Rk−1[: −1])ψ1(k − 1) ψ1(Rk−1[: −2]) ψ2(0)

= Rk[: −1] k Rk[: −2] ψ1(Rk−1[: −1]) k Rk[: −1] k Rk[: −2] ψ1(Rk−1[: −2]) ψ2(0)
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These are the only three occurrences of k that can occur in yy. The square must
contain an even number of k occurrences, so since yy overlaps part of ψ2(0), it
cannot include the first occurrence of k. Therefore, the square contains only the
last two occurrences of k. Since the last letter of Rm[: −1] is 0 for all m, the
second last occurrence of k is preceded by ψ1(0) which ends in 1, and the last
occurrence of k is preceded by a 0. This means that k must be the first letter of
y in the square. It can be seen from the above equation that this square would
not reach ψ2(0) which is a contradiction.

Case 2: k = n+ 2. We have that

ψ2(n) = ψ1(n+ 1) · ψ1(P0(n+ 1))

= ψ1(n+ 1) · ψ1(Rn+1Rn+1[: −2])

= ψ1(n+ 1) · ψ1(Rn+1[: −1]) · ψ1(n+ 1) · ψ1(Rn+1[: −2])

= (n+ 2)P0(n+ 2) · ψ1(Rn+1[: −1]) · (n+ 2)P0(n+ 2) · ψ1(Rn+1[: −2]).

And so ψ2(n) is the “almost square”

ψ2(n) = (n+ 2) Rn+2 Rn+2[: −2]ψ1(Rn+1[: −1])

(n+ 2) Rn+2 Rn+2[: −2]ψ1(Rn+1[: −2]). (1)

and these are all four of the occurrences of n+2 in ψ2(n0). The square must
contain an even number of occurrences of n+ 2.

The square cannot contain all four occurrences of n + 2 since then ψ2(0)
would need to begin with ψ1(Rn+1[−2]) = ψ1(0) which it does not.

So the square only contains the last two occurrences of n + 2. The second
last occurrence is preceded by ψ1(0) which ends in a 1, and the last occurrence
is preceded by a 0. This means that n + 2 must be the first letter of y in the
square. It can be seen from the equation for ψ2(n) that this square would not
reach ψ2(0) which is a contradiction.

Lemma 17. Let n ≥ 1. Then ψ2(0n0) is square-free.

Proof. We can verify computationally that ψ2(010) is square-free. So let n ≥ 2
and suppose there is a square yy in ψ2(0n0). We have

ψ2(0n0) = [ψ2(0)][(n+ 2)P0(n+ 2)P1(n+ 2)][ψ2(0)]

Since ψ2(n) is square-free, yy lies over at least one of the chunk boundaries.
The largest letter of ψ2(0) is 3, so the largest letter of ψ2(0n0) is n+2 which

occurs exactly four times:

ψ2(n) = (n+ 2)Rn+2 Rn+2[: −2]ψ1(Rn+1[: −1])(n+ 2)Rn+2 Rn+2[: −2]ψ1(Rn+1[: −2])

The second and fourth occurrences of n + 2 are the last letter of an Rn+2, so
they are preceded by a 0. The third occurrence is after ψ1(Rn+1[: −1]) which
ends with ψ1(0) = 202101.

The first chunk boundary in ψ2(0n0) has the letters 2(n + 2). The second,
third, and fourth occurrences of n+ 2 all immediately follow a 0 or a 1, so this
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is the only occurrence of 2(n + 2) in ψ2(0n0). This means that it cannot be
contained in either half of the square. Since max(ψ2(0)) = 3 and n + 2 ≥ 4,
2(n+ 2) cannot be the middle of the square either. So the square is contained
in ψ2(n0) which contradicts Lemma 16.

Lemma 18. For n > k > 0, neither ψ2(n) nor ψ2(k) is a suffix of the other.

Proof. Since n > k, |ψ2(n)| > |ψ2(k)|, so ψ2(n) cannot be a suffix of ψ2(k).
From the definition of ψ2, ψ2(k) = (k + 2)P0(k + 2)P1(k + 2) and ψ2(n) ends

with P1(n+ 2). By Remark 15, P1(n+ 2) has suffix (k + 3)P0(k + 2)P1(k + 2).
Therefore, ψ2(k) cannot be a suffix of ψ2(n).

Lemma 19. Let w be a grounded square-free word. Then in ψ2(w), every
occurrence of ψ2(0)[: 6] is a prefix of a 0-chunk, and every occurrence of ψ2(0)[6 :
] is a suffix of a 0-chunk.

Proof. Let p := ψ2(0)[: 6] = 202102 and s := ψ2(0)[−9 :] = 202101202. Since s
is a suffix of ψ2(0)[6 :], proving the result for p and s is sufficient.

For n ≥ 1, ψ2(n) ends with 1 and ψ2(0) begins with 2 and 12 does not occur
in p = 202102, so p cannot lie over a ψ2(n0) chunk boundary. The first letter
of ψ2(n) is n + 2 ≥ 3 which is larger than any letter in p, so p cannot lie over
a ψ2(0n) chunk boundary. Therefore, any occurrence of p in ψ2(w) must be
contained in a single chunk.

Since ψ1(n) = (n + 1)Rn+2[: −2] does not contain 202, p does not occur
in any ψ1(n). Also, ψ1(n) ends with 201, ψ2(n) = ψ1((n + 1)P0(n + 1)) and
(n + 1)P0(n + 1) is grounded, 202 only occurs in ψ2(n) at the beginning of
instances of ψ1(0) = 202101. This means that p = 202102 can never occur in
ψ2(n). We can verify computationally that 202102 only occurs in ψ2(0) as a
prefix. Therefore, p only occurs in ψ2(w) as a prefix of 0-chunks.

If s = 202101202 lies over a ψ2(n0) chunk boundary, the then the 12 would
need to be at the boundary. But this cannot happen since no ψ2(n) ends with
202101. It also cannot lie over a ψ2(0n) boundary since the first letter of ψ2(n)
is n+ 2 ≥ 3 which does not occur in s.

By Lemma 9, ψ1(0) = 202101 only occurs in ψ2(n) = ψ1((n+1)P0(n+1)) as
an 0-chunk. So since no ψ1(n) begins with 202, s = 202101202 does not occur
in ψ2(n). We can verify computationally that s only occurs in ψ2(0) as a suffix.
Therefore, s only occurs in ψ2(w) as a suffix of 0-chunks.

We can easily see that this lemma implies that any occurrence of ψ2(0) in
ψ2(w) is a 0-chunk when w is square-free and grounded.

Proposition 20. ψ2 is square-free over grounded words.

Proof. Suppose w is a grounded square-free word and that ψ2(w) contains a
square yy. We will first show that there is a whole 0-chunk in both halves of
the square, and then use that to show that both halves have the same chunk
decomposition. We then show that if the square contains any partial chunks,
then the final partial chunks of the two halves of the square come from the
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same letter in w. We know that ψ2 is letter injective and ψ2(n) is square-free
for all n. Hence, Theorem 5 will imply that w must contain a square, which is
a contradiction.

Suppose that there are no whole 0-chunks in either half. The square must
contain a whole 0-chunk, or else it would be a factor of ψ2(0n0), contradicting
Lemma 17. Then the whole 0-chunk in the square must be split between the
two halves and the square yy is a proper factor of ψ2(0n0k0) for some n, k ≥ 1
with the center of the square lying in the middle 0-chunk. Consider the prefix
p := ψ2(0)[: 6] and suffix s := ψ2(0)[6 :] of ψ2(0) = ps. Then either p is totally
contained in the first half of the square, or s is totally contained in the second
half.

If s is contained in the second half, then it must also occur in the first half
and by Lemma 19, the only place for this is as a suffix of the first 0-chunk in
ψ2(0n0k0). The two occurrences of s in the square are followed by the first
letters of ψ2(n) and ψ2(k) in each half respectively, so the first letter of ψ2(n),
n + 2 and of ψ2(k), k + 2 must be equal. This means that n = k which is a
contradiction since w is square-free and cannot contain 0n0n0.

If p is contained in the first half, then it must also occur in the second half
and by Lemma 19, the only place for this is as a prefix of the third 0-chunk
in ψ2(0n0k0) = [ps][ψ2(n)][ps][ψ2(k)][ps]. The center of the square lies in the
suffix s of the middle 0-chunk, so the boundary is formed by words s1, s2 such
that s = s1s2. We then get from the first half of the square that y is a proper
suffix of psψ2(n)ps1 and from the second half that y is a prefix of s2ψ2(k)ps.
Since p occurs exactly once in each half, we can see that the second half is
y = s2ψ2(k)ps1. Then s2ψ2(k) is a suffix of psψ2(n) implying that one of ψ2(n)
or ψ2(k) must be a suffix of the other, so by Lemma 18, n = k which is a
contradiction since w is square-free and cannot contain 0n0n0. Therefore, there
must be a whole 0-chunk in one of the halves of the square. Then ψ2(0) occurs
in both halves and by Lemma 19, both halves contain a whole 0-chunk.

We now show that both halves of the square have the same chunk decom-
position. Let [ψ2(ℓ)], 0 ≤ ℓ be any whole chunk in either half of the square. If
l = 0, then by Lemma 19, this is a whole 0-chunk in both halves. If ℓ > 0, then
since there is a whole 0-chunk in each half and w is grounded, there must be a
whole 0-chunk adjacent to this chunk. Thus, either [ps]ψ2(ℓ) or ψ2(ℓ)[ps] is a
factor of y. If [ps]ψ2(ℓ) is a factor of y, then ψ2(ℓ) must be a whole ℓ-chunk in
both halves since any other chunk would start with a different letter. If ψ2(ℓ)[ps]
is a factor, then ψ2(ℓ) must be a whole l-chunk in both halves since no other
chunk can be a suffix of ψ2(ℓ) or have ψ2(ℓ) as a suffix by Lemma 18. Thus,
ψ2(ℓ) is a whole chunk in both halves of the square, so both halves have the
same chunk decomposition.

Suppose either half contains a partial chunk. Then since the halves have the
same chunk decomposition, they must both end with a partial chunk and share
the first letter of their final partial chunk, say ℓ. From the definition of ψ2, this
means that both final partial chunks are partial (ℓ− 2)-chunks.

This verifies the conditions of Theorem 5 which implies that w contains a
square, a contradiction.
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The next three lemmas are used to prove the irreducibility condition in
Theorem 24. They are analogous to Lemmas 11, 12, and 13 about ψ1.

Lemma 21. Let n ≥ 1. Then ψ2(n) generates ψ2(n0).

Proof. Since n0 is square-free and grounded, ψ2(n0) is square-free by Proposi-
tion 20, so we only need to show that ψ2(0) is irreducible in ψ2(n0). We can
computationally verify that ψ2(1) generates ψ2(10) and assume that n ≥ 2.

Since ψ2(n) has suffix P1(n+2) and n+2 ≥ 4, Remark 15 implies that ψ2(n)
has suffix P0(3)P1(3). We can computationally verify that P0(3)P1(3) generates
P0(3)P1(3)20210. The next letter of ψ2(0) is a 2. Hence, we need to show that
2 is irreducible at the end of ψ2(n)202102. Clearly, it cannot be a 0, so we will
show that ψ2(n)202101 contains a square. Using Equation (1) we have

ψ2(n) 202101

= ψ2(n) ψ1(0)

= (n+ 2)Rn+2Rn+2[: −2]ψ1(Rn+1[: −1])(n+ 2)Rn+2Rn+2[: −2]ψ1(Rn+1[: −2]) ψ1(0)

= (n+ 2)Rn+2Rn+2[: −2]ψ1(Rn+1[: −1])(n+ 2)Rn+2Rn+2[: −2]ψ1(Rn+1[: −1]),

which is a square, so 202102 is irreducible in ψ2(n)202102. We can then compu-
tationally verify that P0(3)P1(3)202102 generates P0(3)P1(3)ψ2(0), which im-
plies the desired result.

Lemma 22. For 0 ≤ k ≤ n, k+2 is irreducible at the end of ψ2(nRk[: −1])(k + 2).

Proof. Let 0 ≤ m ≤ k + 1, we will show that wm = ψ2(nRk[: −1])m has a
square suffix. If k = 0, then m ≤ 1. For m = 0 we can use Remark 6 as in
Lemma 12 to show that ψ2(nRk[: −1])0 = ψ2(n)0 is a square, and for m = 1,
ψ2(n)1 has the square suffix 11. Hence, k + 2 = 2 is irreducible.

Note that for k ≥ 1 the last letter of Rk[: −1] is 0 and ψ2(0) ends with
01202101202, so wm has a square suffix for m < 3. Assume m ≥ 3, by definition
ψ2(n) = (n+ 2)P0(n+ 2)P1(n+ 2), and according to Remark 15 P1(n+ 2) has
suffix P0(m)P1(m).

If m−1 = k, then wm has suffix P0(m)P1(m)ψ2(Rm−1[: −1])m. Also, if m−
1 < k it is easy to see that nRk[: −1] has suffix (m−1)Rm−1[: −1]. By definition
ψ2(m − 1) = (m + 1)P0(m + 1)P1(m + 1), and again Remark 15 implies that
P1(m+1) has suffix P0(m)P1(m). Hence, wm has suffix P0(m)P1(m)ψ2(Rm−1[:
−1])m for all 3 ≤ m ≤ k + 1. Finally, we have that

P0(m)P1(m)ψ2(Rm−1[: −1])m

= P0(m)P1(m)ψ2(Rm−2[: −1])ψ2(m− 2)ψ2(Rm−2[: −1])m

= P0(m)P1(m)ψ2(Rm−2[: −1])m P0(m)P1(m)ψ2(Rm−2[: −1])m,

which is a square.

Lemma 23. If n ≥ 1 and 0 ≤ k ≤ n, then ψ2(n) generates ψ2(nRk).
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Proof. Since nRk is square-free and grounded, Proposition 20 implies that
ψ2(nRk) is square-free. It is now sufficient to show that ψ2(Rk) is irreducible
in ψ2(nRk).

We prove this inductively over n. The base case n = 1 implies that k = 0 or
k = 1. We can computationally verify that ψ2(1) generates ψ2(1R0) = ψ2(10)
and that ψ2(1) generates ψ2(1R1) = ψ2(101).

Fix n > 1 and suppose the result holds for all 1 ≤ n0 < n. That is,

ψ2(Rk) is irreducible in ψ2(n0Rk) for all 0 ≤ k ≤ n0 and 1 ≤ n0 < n. (i)

We will show that the result holds for n0 = n. That is, ψ2(Rk) is irreducible in
ψ2(nRk) for all 0 ≤ k ≤ n.

We can prove this intermediate step by a second induction, now over k. The
base case is k = 0, which holds by Lemma 21 since R0 = 0. Now fix k and
suppose

ψ2(Rk0
) is irreducible in ψ2(nRk0

) for all 0 ≤ k0 < k. (ii)

We will show that the result holds for k0 = k. That is, ψ2(Rk) is irreducible in
ψ2(nRk).

We have that ψ2(nRk) = ψ2(nRk−1Rk−2 · · ·R2R1R0k). By the second in-
ductive hypothesis (ii), ψ2(Rk−1) is irreducible in ψ2(nRk−1). The last letter
of Rk−1 is k− 1, so the first inductive hypothesis (i) says that ψ2(Rk−2) is irre-
ducible in ψ2((k−1)Rk−2) and so ψ2(Rk−1Rk−2) is irreducible in ψ2(nRk−1Rk−2).
Repeating this argument shows that ψ2(Rk−1Rk−2 · · ·R2R1R0) = ψ2(Rk[: −1])
is irreducible in ψ2(nRk[: −1]). Lemma 22 implies that k + 2 is irreducible
in ψ2(nRk[: −1])(k + 2). And ψ2(k) = (k + 2)P0(k + 2)P1(k + 2) is a prefix
of L(k + 2) by Theorem 14, so k + 2 generates ψ2(k), meaning that ψ2(k) is
irreducible in ψ2(nRk[: −1])ψ2(k) = ψ2(nRk), which proves the result.

We now prove the main theorem of this section. For n ≥ 3, define

T (n) = P0(n)P1(n)P2(n).

Theorem 24. For n ≥ 3, L(n) has prefix nT (n).

Proof. Note that nT (n) = nP0(n)P1(n)P2(n) = ψ2((n − 2)P0(n − 2)). Hence,
since (n − 2)P0(n − 2) is square-free and grounded, Proposition 20 implies
that nT (n) is square-free. It remains to show that P2(n) = ψ2(P0(n − 2)) =
ψ2(Rn−2Rn−2[: −2]) is irreducible in nP0(n)P1(n)P2(n).

We know from Theorem 14 that n generates nP0(n)P1(n). The fact that
P2(n) = ψ2(Rn−2Rn−2[: −2]) is irreducible in nP0(n)P1(n)P2(n) follows from
Lemma 23 by the same argument used in the proof of Theorem 14.

Remark 25. Again, using Remark 6 we have that for n ≥ 4

P2(n) = ψ2(P0(n− 2))

= ψ2(Rn−2[: −1](n− 1)Rn−2[: −2])

= ψ2(Rn−2[: −1]) ψ2(n− 2) ψ2(P0(n− 3))

= ψ2(Rn−2[: −1]) nP0(n)P1(n) P2(n− 1),
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Hence, by Remark 15 we see that P2(n) has T (n−1) = P0(n−1)P1(n−1)P2(n−
1) as a suffix. This means that T (n) has suffix T (n− 1), and applying the same
argument repeatedly we have that T (n) has T (3) as a suffix.

4 The structure of L(n)

In this section we prove that the word L(n) reflects the structure of the ruler
sequence for n = 1 and n ≥ 3. Namely, L(n) = Yn ϕ(L(ε)) for a finite prefix Yn
and a morphism ϕ.

Definition. We say a morphism ϕ is L-commuting over a set of words ∆ ⊂
N∗ ∪ Nω if L(ϕ(w)) = ϕ(L(w)) for all w ∈ ∆.

Let Σ be the set of all nonempty even-grounded square-free words. If ϕ is
L-commuting over Σ, we get in particular

L(ϕ(0)) = ϕ(L(0)) = ϕ(L(ε)),

which lets us determine the lexicographically least square-free word with prefix
ϕ(0), as the result of applying the morphism ϕ to the ruler sequence.

In Section 4.1 we introduce a morphism α and prove that it is L-commuting
over the set Σ of even-grounded square-free words. In Section 4.2 we use Re-
mark 4 and the L-commuting property of α to find the general structure of L(1)
and L(n) for n ≥ 3. In Section 4.3 we state a conjecture about the structure of
L(2) being given by a morphism γ.

We start by showing that the ruler morphism ρ is L-commuting over the
set of square-free words, and then use this fact to prove a result that estab-
lishes properties that are sufficient for a morphism to satisfy the L-commuting
property over the set Σ.

Theorem 26. The ruler morphism ρ is L-commuting over the set of all nonempty
square-free words.

Proof. Let x be any nonempty square-free word. If |x| = ∞, then ρ(L(x)) =
ρ(x) = L(ρ(x)).

On the other hand, if |x| = n < ∞, let w = ρ(L(x)) and v = L(ρ(x)). We
proceed to prove that w = v by induction, proving that if w and v agree on the
first 2k letters, then they will also agree on the next two letters. For the Base
case, it is easy to see that w[: 2n] = v[: 2n] = ρ(x).

For the inductive step, assume that w and v agree on the first 2k letters,
k ≥ n. It is clear from the definition of these words that w and v are both
square-free, and if v ̸= w, then v ≺ w.

This implies that v[2k] ≤ w[2k] = ρ(L(x))[2k] = 0, so w and v agree at
position 2k. Now suppose toward a contradiction that v[2k+1] < w[2k+1] and
let l = v[2k + 1] and y = L(x)[: k](l − 1). We have

ρ(y) = ρ(L(x)[: k](l − 1)) = ρ(L(x)[: k]) 0 l = L(ρ(x))[: 2k + 2] = v[: 2k + 2],
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so y is square-free. However

y[k] = l − 1 = v[2k + 1]− 1 < w[2k + 1]− 1 = ρ(L(x))[2k + 1]− 1 = L(x)[k].

Since y[: k] = L(x)[: k], this implies that y is a square-free word beginning with
x that is smaller than L(x). This is a contradiction and so w[2k+1] = v[2k+1].
Therefore w and v agree at position 2k+1, which proves the inductive step.

For example, Theorem 26 implies that for n ≥ 1, ρ(L(n−1)) = L(ρ(n−1)) =
L(0n). So if we determine the structure of the word L(n−1), this Theorem gives
us the structure of the word L(0n) as the ruler morphism applied to L(n− 1).
In particular for n = 1 we have

ρ(L(0)) = ρ(ρ∞(0)) = ρ∞(0) = L(01) = L(ρ(0)).

The ruler morphism is not L-commuting over the set of all words on N. For
example,

L(ρ(00)) = L(0101) = 01012010 · · · ̸= 01010201 · · · = ρ(0010 · · · ) = ρ(L(00)).

Theorem 27. Let Σ be the set of all nonempty even-grounded square-free words.
Let ϕ be a non-erasing morphism satisfying the following conditions.

1. For all w ∈ Σ, ϕ(w) is square-free.

2. ϕ(0) generates ϕ(01).

3. ϕ(0n) generates ϕ(0n0) for all n > 0.

4. ϕ(0n)+ generates ϕ(0 (n+ 1)) for all n > 0.

Then ϕ is L-commuting over Σ.

Proof. Let w ∈ Σ. We first show that L(w) ∈ Σ. If w = 0, then L(w) is the ruler
sequence which is even-grounded and square-free. If w ̸= 0, |w| ≥ 2 and any
even-length prefix of w is the image of a nonempty square-free word under ρ. So
there is a nonempty square-free word w0 such that if |w| is even, w = ρ(w0), and
if |w| is odd, w[: −1] = ρ(w0). If |w| is odd, its last letter is 0 which is irreducible,
so L(w) = L(w[: −1]). Thus in either case, L(w) = L(ρ(w0)) = ρ(L(w0)) which
is even-grounded and square-free. Here, the second equality is because ρ is L-
commuting over square-free words by Theorem 26. Since L(w) ∈ Σ, it follows
from Condition 1 that ϕ(L(w)) is square-free.

Now we need to show that ϕ(L(w)) is irreducible. We proceed by induction,
assume that for some number k ≥ |w|, ϕ(L(w)[: k + 1]) is a prefix of L(ϕ(w)).
We break this next bit down into cases, letting m = L(w)[k].

Case 1: If m ̸= 0 then L(w)[k − 1] = 0 and so L(w)[: k + 1] ends in
0m. In this case we have from Condition 3 that ϕ(L(w)[: k + 1]) generates
ϕ(L(w)[: k + 1] 0) by Remark 4. As L(w)[: k + 2] = L(w)[: k + 1] 0 this would
mean that ϕ(L(w)[: k + 2]) is a prefix of L(ϕ(w)), demonstrating the inductive
step.
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Case 2: In the case that m = 0 it must follow that l := w[k + 1] ̸= 0. We
have that ϕ(L(w)[: k + 1]) ends with ϕ(0) which by Condition 2 we get that
ϕ(1) at the end of ϕ(L(w)[: k + 1] 1) is irreducible. If l = 1 then we’re done. If
not then we enter the following argument.

Let n be such that ϕ(n) at the end of ϕ(L(w)[: k + 1]n) is irreducible and
0 < n < l. L(w)[: k+1]n has w as prefix and is lexicographically less than L(w)
so L(w)[: k + 1]n contains a square and therefore ϕ(L(w)[: k + 1]n) contains a
square. We have that ϕ(0n) at the end of ϕ(L(w)[: k+1]n) is irreducible mean-
ing that all words lexicographically less than ϕ(0n) would introduce a square.
But ϕ(0n) also introduces a square. This means that all words less than ϕ(0n)+

introduce a square, so ϕ(0n)+ is irreducible in ϕ(L(w)[: k + 1]n)+. Then from
Condition 4 we get that ϕ(0(n + 1)) at the end of ϕ(L(w)[: k + 1] (n + 1)) is
irreducible. Then by induction on n, ϕ(L(w)[: k + 1]l) is irreducible.

This argument allows us to show that L(ϕ(w)) and ϕ(L(w)) agree on their
(k + 1)th chunk and so provides the inductive step. The base case is simply
when k = |w| which is trivial since ϕ(w) is a prefix of both words.

4.1 The morphism α

The morphism α is defined as follows.

Definition. For all n ≥ 0, let

α(n) =


EFE if n = 0

B1 R4 C B1 R4 if n = 1

α(n− 1)+ Rn+3 C α(n− 1)+ Rn+3 if n ≥ 2,

where

C = 0102030102,

B0 = 0301 ψ1(1010)[: −3] ψ2(1010)[: −6] ψ2(10)[: −12] 301020,

B1 = ρ(B0[7 : −5]),

E = 0102B01B0[: −9],

F = B0[−9 :]3010302C0103C+02, and

G = 010203012.

These definitions can be referenced in Section 7. The lengths of the auxiliary
words are |C| = 10, |B0| = 798, |B1| = 1572, |E| = 1592, |F | = 42 and |G| = 9.
We can computationally verify that E is the largest word that is both a prefix
and a suffix of α(0). It is of interest to note that for n > 0, α(n) has prefix B1

and that B1 has prefix F++, so F cannot be a prefix of any α(n). Also, the
word G is useful since it is the shortest word that generates α(0).

Over the next two subsections, we prove that α satisfies the conditions of
Theorem 27, which will imply that it is L-commuting over nonempty even-
grounded square-free words.
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4.1.1 Condition 1: α is square-free over grounded words

Condition 1 of Theorem 27 says that α is square-free over even-grounded words.
In this section, we prove the following stronger property.

Theorem 28. α is square-free over grounded words.

Theorem 28 will be shown to follow from Theorem 5. This requires the
results about α shown in the following lemmas.

Lemma 29. Let n > k > 0. Then α(n) and α(k) end with different letters and
neither is a prefix of the other.

Proof. By definition, α(n) ends with Rn+3 which has n+ 3 as its last letter, so
α(n) and α(k) end with different letters. Consider that since n > k, |α(n)| >
|α(k)| so α(n) cannot be a prefix of α(k). Also, α(n) begins with α(k)+ so α(k)
cannot be a prefix of α(n).

The next three results show how E can be used to restrict the placement of
chunks throughout a word α(w) where w is square-free and grounded.

Lemma 30. If w is a grounded square-free word, then every occurrence of E
in α(w) is a prefix or suffix of a 0-chunk.

Proof. We can verify computationally that E only occurs in α(0) as a prefix
and a suffix. For n > 0, α(n) is even-grounded, but E is not grounded so it
cannot be a factor of α(n). So any other occurrence of E in α(w) must lie over
the chunk boundary in α(0n) or α(n0) for some n > 0.

If E lies over the chunk boundary in α(0n), then there must be a nonempty
suffix of E that is also a prefix of α(n). But every prefix of α(n) is even-grounded
and E has no nonempty even-grounded suffix since it ends with 1 2.

If E lies over the chunk boundary in α(n0), then there must be a nonempty
prefix of E that is also a suffix of α(n). But max(E) = 3 and the last letter of
α(n) is n+ 3 which is greater than 3.

Corollary 31. If w is a grounded square-free word, then every occurrence of
α(0) in α(w) is a 0-chunk.

Proof. Any occurrence of α(0) = EFE in α(w) begins and ends with E. There
are only two occurrences of E in α(0) so by Lemma 30, one E must be a prefix
of a 0-chunk and the other must be a suffix of a 0-chunk. F is shorter than
every chunk, so no other chunk can be contained in it. Therefore, this must be
a whole 0-chunk.

Corollary 32. Let w be a grounded square-free word and l > 0. If Eα(l) or
α(l)E is a factor of α(w), then that occurrence of α(l) is an l-chunk.

Proof. If Eα(l) occurs in α(w), E is followed by the prefix F++ of α(l), so E
cannot be followed by F and this cannot be the prefix of a 0-chunk. Thus, E
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must be a suffix of a 0-chunk by Lemma 30. So a nonzero chunk begins at the
start of α(l). By Lemma 29, this must be an l-chunk.

An analogous argument uses the fact that F cannot be the suffix of any α(l)
to show the result for α(l)E.

The following is the final result that we need for proving Theorem 28, that
α is square-free over grounded words.

Proposition 33. α(0n0) is square-free for all n > 0.

The proof requires Lemmas 34 to 40. Lemmas 34 to 36 show some results
about the structure of α(n). Lemmas 37 and 38 show that α(n) is square-free
for all n. Finally, Lemmas 39 and 40 show that α(0n) and α(n0) are square-free,
which is then used to prove Proposition 33.

Lemma 34. For all n ≥ 1, 0203R+
3 R

+
4 · · ·R+

n+2Rn+3 is a suffix of α(n).

Proof. We proceed by induction. For n = 1 we can check directly that 0203R+
3 R4

is a suffix of α(1). For the inductive step, assume that for some k ≥ 1, we have
that 0203R+

3 · · ·R+
k+2Rk+3 is a suffix of α(k) and recall that

α(k + 1) = α(k)+ Rk+4 C α(k)+ Rk+4.

Since α(k) ends with 0203R+
3 · · ·R+

k+2Rk+3, we have that α(k + 1) must end

with 0203R+
3 · · ·R+

k+2R
+
k+3Rk+4, which concludes the proof.

Lemma 35. For all n ≥ 1, Rn+4[i :] is a suffix of α(n)+ if and only if i ≥ 6.

Proof. We can write Rn+4 as

Rn+4 = R3R
+
3 R

+
4 · · ·R+

n+2R
+
n+3

= 01020103R+
3 R

+
4 · · ·R+

n+2R
+
n+3.

Also, it follows from Lemma 34 that α(n)+ ends with 0203R+
3 · · ·R+

n+2R
+
n+3.

These two words are identical starting with the 03R+
3 , but not including any

letters before. Therefore, Rn+4[i :] is a suffix of α(n)+ if and only if i ≥ 6.

Lemma 36. For all n ≥ 1, α(n) ends in n+3, and does not contain any letter
greater than n+ 3. For n ≥ 2, α(n) contains exactly four occurrences of n+ 3.

Proof. This can be proved using induction. For the base case, it can be checked
by direct computation that α(1) and α(2) satisfy the lemma.

For the inductive step, assume that for some k ≥ 2, α(k) satisfies the lemma.
Since C does not contain any occurrence of k + 4 or higher letters and

α(k + 1) = α(k)+Rk+4Cα(k)
+Rk+4,

it is clear that our assumption implies that α(k + 1) contains exactly four oc-
currences of k + 4, no higher letters, and ends with k + 4.
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Lemma 37. For all n ≥ 1, Cα(n)+ is square-free.

Proof. We proceed by induction. We can check computationally that the claim
holds for n = 1.

For the inductive step assume that for some k ≥ 1, Cα(k)+ is square-free
and suppose that the word w = Cα(k+1)+ contains a square. We can think of
w as the concatenation of 6 factors:

w = w1w2w3w4w5w6 := [C][α(k)+][Rk+4][C][α(k)
+][R+

k+4].

By the inductive hypothesis we have that w1w2 = w4w5 is square-free. We
divide the rest of the proof in four steps.

Step 1: Proving that w1w2w3 is square-free. Suppose that w1w2w3 contains
a square. We know that the square must cross the boundary between w2 and
w3, and hence it includes the last letter of w2 = α(k)+, which by Lemma 36 is
k + 3 + 1 = k + 4. The only other occurrence of k + 4 in w1w2w3 is the last
letter of w3 = Rk+4, so the square ends in k + 4. Hence, the second half of the
square is the entire Rk+4, and so Rk+4 is a suffix of α(k)+, which contradicts
Lemma 35. This completes the proof of our first claim.

Step 2: Proving that w1w2w3w4 is square-free. Suppose that w1w2w3w4

contains a square. By the previous step, the square must cross the boundary
between w3 and w4, and hence it includes the letter w3[−1] = k+4. Since k+4
does not occur in w4 = C, and the only other occurrence of k+4 in this word is
as the last letter of w2 = α(k)+, each half of the square must have length equal
to |w3| = 2k+4. The largest common prefix between the ruler sequence and C is
C[: 5]. So at most these five letters can appear in each half of the square after
the occurrences of k + 4. On the other hand, Lemma 35 implies that at most a
suffix of w3 = Rk+4 with length 2k+4 − 6 can appear as a suffix of w2 = α(k)+,
and so at most this many letters can appear in each half of the square up to the
occurrences of k + 4.

Therefore, each half of the square contains at most 2k+4 − 6 + 5 = 2k+4 − 1
letters, which just falls short of the number required. Therefore no square can
exist in w1w2w3w4.

Step 3: Proving that w1w2w3w4w5 is square-free. Suppose that it contains
a square. By the previous step the square can not be contained in w1w2w3w4.
Also, by the inductive hypothesis the square can not be contained in w4w5. So
the square must contain a nonempty suffix of w3 = Rk+4, all of w4 = C, and a
nonempty prefix of w5 = α(k)+. In particular it includes k+4, the last letter of
w3. Also, note that this word includes only three occurrences of k + 4 (w2[−1],
w3[−1] and w5[−1]), hence the square must contain only two of them.

If the square contains w2[−1] and w3[−1], then the second half of the square
contains the whole factor w4 = C right after w3[−1]. This implies that C must
also appear right after w2[−1], and so C must be a prefix of w3 = Rk+4, which
is a contradiction. On the other hand, if the square contains w3[−1] and w5[−1],
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then the second half of the square must be w4w5 = Cα(n)+ and the first half
must be contained in w3 = Rk+4. This is impossible since C is not contained in
Rk+4.

Step 4: Proving that w1w2w3w4w5w6 is square-free. Suppose that it con-
tains a square. The square must contain w5[−1] = k + 4 and since w6 = R+

k+4

does not contain k + 4, the occurrence of k + 4 in the first half of the square
must be at w3[−1]. Note that the first half of the square cannot contain the
whole w4 = C, because this is not a prefix of w6 = Rn+4. This implies that
w5 = α(n)+ is totally contained in the second half of the square. Hence, since
|Rk+4| < |α(n)+| we have that w3 = Rn+4 is a suffix of w5 = α(n)+, which
contradicts Lemma 35.

Therefore we conclude that w1w2w3w4w5w6 is square-free, which completes
the proof of the lemma.

Lemma 38. α(n) is square-free for all n ≥ 0.

Proof. We proceed by induction. We can check computationally that α(0) and
α(1) are square-free.

For the inductive step assume that α(k) is square-free for some k ≥ 1. We
can think of w = α(k + 1) as the concatenation of 5 factors:

w = w1w2w3w4w5 := [α(k)+][Rk+4][C][α(k)
+][Rk+4].

Suppose w contains a square. By Lemma 37, w+ = α(k+1)+ is square-free. So
w[: −1] is square-free and the square in w is a suffix, containing w5[−1] = k+4.
Also, the square must contain w4[−1] = k + 4, since w5 = Rk+4 is square-free.
Now, since w contains exactly four occurrences of k + 4 we have the following
cases:

Case 1: the square contains only w4[−1] and w5[−1]. In this case the second
half of the square would have to be the whole factor w5 = Rk+4. Hence the first
half of the square would have Rk+4 as a suffix of w4 = α(n)+ which contradicts
Lemma 36.

Case 2: the square contains all four occurrences of k + 4 which are w1[−1],
w2[−1], w4[−1], and w5[−1]. In this case k + 4 must be the final letter in each
half of the square, and so the first half of the square would be a suffix of w1w2.
This is not possible since the second half of the square would be w3w4w5 which
is longer than w1w2.

Therefore we conclude that w = α(k+1) is square-free, which completes the
inductive step.

Lemma 39. α(0n) is square-free for all n ≥ 1.

Proof. From Lemma 38 we have that any square in α(0n) must cross into both
chunks. We consider two cases based on the length of the square.

Suppose there is a square yy in α(0n) such that |y| ≤ |α(0)|. Then the
square’s total length would be at most |α(0)| × 2 = 6452 letters. Computation-
ally, we can see that α(3) and α(4) share their first 13029 letters. Since α(n) is
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a prefix of α(n+ 1), all α(n) for n ≥ 3 have the same first 13029 letters. Thus,
α(0n) has the same first |α(0)| + 13029 = 16255 letters for all n ≥ 3. Check-
ing with a computer, we find that α(01), α(02), and α(03) are square-free, so
the first 16255 letters of α(0n) are square-free for all n. Since the square must
intersect the 0-chunk and has length at most |α(0)| × 2, the square must be
contained in the first |α(0)| × 3 = 9678 letters. This is a contradiction so no
square |yy| with length |y| ≤ |α(0)| can occur in α(0n).

Now suppose |y| > |α(0)|. Then the second half of the square is entirely
contained in α(n). However, α(n) is grounded and α(0) ends with 12. This
means the first half of the square can’t contain more than the last letter of α(0)
so it remains to show that 2α(n) is square-free.

Since
C[−1]α(n)+ = 2α(n)+

is a factor of α(n+ 1), it must be square-free. So we can show that decreasing
the last letter by one does not introduce a square. We know that 2α(n)[1 :]
and 2α(n)[: −1] are square-free, so a square would need to be the entire word.
However,

|2α(n)| = 1 + 2|α(n− 1)|+ 2|Rn+3|+ 10,

which is odd so it is impossible for the entire word to be a square.

Lemma 40. α(n0) is square-free for all n ≥ 1.

Proof. We can check by computer that α(10) is square-free. Assume n ≥ 2 from
now on.

Since α(0) and α(n) are square-free, any square in α(n0) must cross into
both chunks and include the n+3 at the end of α(n). Since max(α(0)) = 3, the
n + 3 in each half must come from α(n). As a result, we know the entire first
half of the square is in α(n). Additionally, α(0) becomes ungrounded at the
ninth letter and α(n) is grounded, so the square can’t extend past the eighth
letter of α(0). Thus this proof simplifies to proving

α(n)01020301

is square-free. From Lemma 36, α(n) contains 4 occurrences of n+3, so the full
square must either contain the last two or all four.

Case 1: The square contains only the third and fourth occurrences of n+3,
so the square is contained in

Cα(n− 1)+Rn+301020301 = Cα(n− 1)+Rn+3C[: 8],

which is a prefix of Cα(n)+, which is square-free by Lemma 37.
Case 2: The square contains all occurrences of n+ 3, so it appears in

α(n− 1)+Rn+3Cα(n− 1)+Rn+3C[: 8].

The second and fourth occurrences of n+ 3 are separated by a distance of

|C|+ |α(n− 1)+|+ |Rn+3| = 10 + |α(n− 1)+|+ |Rn+3|,
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so the entire square would need to have twice this length. However, the whole
word has length

|α(n−1)+|+|Rn+3|+|C|+|α(n−1)+|+|Rn+3|+|C[: 8]| = 18+2|α(n−1)+|+2|Rn+3|,

which is less than the required length of square.
Since both cases are ruled out, no square can exist in α(n0).

We can now prove that α(0n0) is square-free:

Proof of Proposition 33. We can prove via computation that α(010) and α(020)
are square-free. Assume n ≥ 3 from here.

Using Lemmas 39 and 40, it follows that if a square exists in α(0n0), then
it includes the entire n-chunk as well as a part of each 0-chunk. We can check
using a computer that |α(0)| = 3226 and |α(3)| = 13030. For any p > q > 1,
|α(p)| > |α(q)|. Therefore, |α(n)| ≥ |α(3)| > |α(0)|.

Case 1: Suppose the boundary between the halves of the square appears
either in a 0-chunk or between chunks. Then the half of the square entirely in a
0-chunk would have a length at most 3226. The other half would also have the
same length, but we know this half needs to contain the entire n-chunk, which
has length greater than 3226. Thus this case is impossible.

Case 2: Now suppose the boundary lies within the n-chunk. Let x be the
nonempty suffix of the first 0-chunk contained in the square, and z be the
nonempty prefix of the last 0-chunk contained in the square. The occurrence
of x in the second half of the square begins in α(n). If it extends into the last
0-chunk, then the whole square has length less than

|xzxz| ≤ 4× |α(0)| = 12904 < 13030 = |α(3)| ≤ |α(n)|.

This is not possible since the square contains all of α(n). Thus, there are
nonempty words y such that the square can be written as

x][yzxy][z,

where yzxy = α(n). Since all of α(n) is grounded, x and z are both grounded.
We can check by computer that the longest grounded prefix of α(0) is 01020301,
and its longest grounded suffix is 2. It follows that x = 2 and z is a prefix of
01020301. This means that |zx| ≤ 9 and zx must appear in the exact center of
α(n). The middle 10 letters of α(n) are C = 0102030102, so zx is located at the
center of C, meaning that it must be grounded. Thus, the only possible values
for zx are 02, 0102, 010202, and 01020302. Clearly none of these appear at the
center of C, so this square cannot exist.

We can now use the above results to prove that α is square-free over grounded
words.

Proof of Theorem 28. Suppose w is a square-free grounded word and α(w) con-
tains a square yy. We will first show that E must be a factor of y, and then use
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that to show that both halves of the square have the same chunk decomposition.
We then show that each half of the square contains a whole chunk, and that if
the square contains any partial chunks, then the initial partial chunks of the two
halves of the square come from the same letter. It is clear from its definition
that α is letter-injective, and we know from Lemma 38 that α(n) is square-free
for all letters n. Hence, Theorem 5 will imply that w contains a square, which
is a contradiction.

The square yy contains a whole 0-chunk, since otherwise it would be a factor
of α(0n0), contradicting Proposition 33. Since α(0) = EFE, there are at least
two whole occurrences of E in yy. At least one of these occurrences must be
completely contained in one half of the square. Thus, E is a factor of y.

Let [α(l)], 0 ≤ l be any whole chunk in either half of the square. We will
show that the corresponding occurrence of α(l) in the other half is also a whole
l-chunk. If l = 0, then by Corollary 31, α(l) must be a whole 0-chunk in both
halves. If l > 0, then since w is grounded and E is a factor of y, there must
be a whole occurrence of E adjacent to this chunk and entirely contained in
this half of the square. Thus, either Eα(l) or α(l)E is a factor of y. Then by
Corollary 32, α(l) is a whole l-chunk in both halves of the square, so both halves
have the same chunk decomposition.

Suppose neither half of the square contains a whole chunk. Then yy cannot
span over more than three chunks. Since α(0n0) is square-free by Proposition 33,
yy must be a proper factor of α(n0k). Then yy overlaps all three chunks be-
cause α(n0) and α(0k) are square-free. By Lemma 30, there are exactly two
occurrences of E in α(n0k) and each must be in a different half of the square
since E is a factor of y. But the letter before the E in the first half is the last
letter of α(n), which is n + 3, and the letter before the E in the second half is
the last letter of F , which is 2. We cannot have E as a prefix of y, or else the
square would not overlap the first of the three chunks. This is a contradiction
so one half of the square must contain a whole chunk. Since both halves have
the same chunk decomposition, both halves contain a whole chunk.

Suppose either half of the square contains a partial chunk. Then since the
halves have the same chunk decomposition, they must both begin with a partial
chunk. We will show that the halves share their initial partial chunk. The initial
partial chunks end with the same letter, so by Lemma 29, they must be equal
chunks or one of them must be a 0-chunk. But since the halves of the square
have the same chunk decomposition and contain a whole chunk, their first whole
chunks are equal. So the final partial chunks are either both 0-chunks or equal
nonzero chunks.

This verifies the conditions of Theorem 5 which implies that w contains a
square, a contradiction.

4.1.2 Conditions 2, 3, and 4

In this section we prove that α satisfies the remaining conditions of Theorem 27.
Condition 2 (α(0) generates α(01)) can be verified via direct computation. In
the following result we prove that α satisfies Condition 3.
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Theorem 41. For all n > 0, α(0n) generates α(0n0).

Proof. The case n = 1 can be verified via direct computation, so we assume
n ≥ 2. By Theorem 33 α(0n0) is square-free, hence since the word G generates
α(0), it is enough to show that G is irreducible in α(0n)G. Indeed, consider

α(0n)G = α(0n) 010203012.

It is clear that the only letters in G that could potentially be reduced are the
underlined ones. The 3 could only be reduced to 1, in which case note that

α(0n) 010201 = · · ·α(n) 010201
= · · ·α(n− 1)+Rn+3Cα(n− 1)+Rn+3 010201

= · · ·α(n− 1)+Rn+3010201

= · · ·Rn+3[6 :]Rn+3010201 (by Lemma 35)

= · · ·Rn+3[6 :]010201Rn+3[6 :]010201,

which contains a square, so the 3 in G is irreducible.
Now, the last 2 in G could only be reduced to 0, and in this case note that

α(0n) 010203010 = · · · 2α(n) 010203010
= · · · 2α(n− 1)+Rn+3Cα(n− 1)+Rn+3 010203010

= · · · 2α(n− 1)+Rn+30102030102α(n− 1)+Rn+3 010203010,

which contains a square, so the last letter of G is irreducible.

Before proving that α satisfies Condition 4 of Theorem 27 we need to estab-
lish the following lemmas.

Lemma 42. C is irreducible in α(n)+Rn+4C for all n > 0.

Proof. Recall that C = 0102030102. Clearly, the only letter that is reducible
within C is the 3, which could only be made a 1. In this case we would have
α(n)+Rn+4010201. Since n ≥ 1, Lemma 35 says that Rn+4[6 :] is a suffix of
α(n)+. Also, Rn+4[: 6] = 010201 for all n. Therefore

α(n)+Rn+4010201 = · · ·Rn+4[6 :]010201Rn+4[6 :]010201

which contains a square. Hence C is irreducible.

Lemma 43. C generates Cα(n)+ for all n > 0.

Proof. We proceed by induction. We can check in the case n = 1, that Cα(1)+

is a prefix of L(C) by direct computation.
For the inductive step, assume that C generates Cα(k)+ for some k ≥ 1.

First note that

Cα(k + 1)+ = Cα(k)+Rk+4Cα(k)
+R+

k+4
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is square-free, since it is a factor of α(k + 2). Then we just need to show that
α(k + 1)+ is irreducible.

From the inductive hypothesis α(k)+ is irreducible after C and since Rk+4

is a prefix of the ruler sequence, it is also irreducible. Now, Lemma 42 im-
plies that C is irreducible after Cα(k)+Rk+4 and from the inductive hypothesis
again we conclude that that α(k)+ is irreducible after Cα(k)+Rk+4C. Finally,
the last letter in R+

k+4 cannot be reduced by 1 because it would create the
square (Cα(k)+Rk+4)

2, and cannot be reduced by more than 1 because Rk+4

is irreducible. Therefore α(k)+Rk+4Cα(k)
+R+

k+4 = α(k + 1)+ is irreducible in
Cα(k + 1)+, which concludes the proof.

We note that Lemma 43 immediately describes the structure of L(012).

Corollary 44. L(012) = 01201 limn→∞ ρ−1(α(n)).

Proof. First note that ρ−1 is well defined on α(n) since it is even-grounded.
Since 010203 generates C, Lemma 43 implies that L(ρ(012)) = L(010203) =
L(C) = C limn→∞ α(n). Since ρ is L-commuting over square-free words by The-
orem 26, L(ρ(012)) = ρ(L(012)). Thus, L(012) = ρ−1(C)ρ−1(limn→∞α(n)) =
01201 limn→∞ ρ−1(α(n)).

Finally, we prove that α satisfies Condition 4.

Theorem 45. α(0n)+ generates α(0(n+ 1)) for all n > 0.

Proof. From Lemma 39 we know that α(0(n+1)) is square-free, so it is enough
to show that α(n)+ generates α(n+ 1). To show this, recall that

α(n+ 1) = α(n)+Rn+4Cα(n)
+Rn+4.

Consider that α(n)+ generates α(n)+Rn+4 C, because Rn+4 is a prefix of the
ruler sequence and C is irreducible by Lemma 42. Similarly, Lemma 43 implies
that α(n)+Rn+4 is irreducible after C. Therefore α(n)+ generates α(n+1).

4.1.3 Conclusion

We have proved that the morphism α satisfies all the requirements of Theo-
rem 27, hence we have the following result.

Theorem 46. α is L-commuting over Σ, the set of all nonempty even-grounded
square-free words.

Corollary 47. L(G) = L(α(0)) = α(L(ε)).

Proof. Recall that G generates α(0), so L(G) = L(α(0)). The other equality
follows directly from Theorem 46, since 0 ∈ Σ.
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4.2 Structure of L(1) and L(n) for n ≥ 3

The following result will reduce the task of proving the square-freeness of a word
formed by a finite prefix followed by α(L(ε)) to a finite computation.

Lemma 48. Let w be a finite square-free word. If wα(L(ε)) contains a square,
then that square contains no letter greater than max(wα(0)).

Proof. Suppose toward a contradiction that there is a square yy with a letter
greater than max(wα(0)). Since w and α(L(ε)) are square-free, yy must cross
the boundary between these two factors. Choose n to be some letter such
that max(α(n)) is greater than any letter in y. Then yy must be contained in
wα(Rn[: −1]n) = wα(Rn).

Let l := max(y) > max(wα(0)) and choose some occurrence of l in the first
half of the square. Since l is neither contained in w nor α(0), and since Rn is
even-grounded, this occurrence of l is from an i-chunk which is after a 0-chunk.
Also, this 0-chunk must be totally contained within the first half of the square,
since the square involves w.

Let s be the suffix of the first half of the square starting right after w. By
our previous reasoning, s contains the whole first 0-chunk. We claim that the
occurrences of s at the end of each half of the square yy have the same chunk
decomposition. Indeed, let s1 and s2 be the occurrences of s in the first and
second half of the square respectively. Consider the first whole occurrence of
α(0) in s1 and s2, Lemma 31 implies that these occurrences of α(0) are indeed
0-chunks.

Now recall that by Lemma 29, for n > k > 0, we have that α(n) and α(k)
end with different letters and neither is a prefix of the other. Hence, it is not
hard to see that if for some n > 0, there is a whole n-chunk in s1 either right
before or immediately after this 0-chunk, then s2 must also have this n-chunk
in the same position. Inductively we have that s1 and s2 have the same chunk
decomposition.

The first half of the square has no initial partial chunk. If the occurrence
of l in the first half of the square is in the final partial chunk, then that chunk
ends with a suffix of w (which is the initial partial chunk of the second half).
But by Lemma 36, the last letter of the chunk is its largest letter which is at
least l. This is a contradiction since l > max(w), so l occurs in a whole i chunk.
Since s1 and s2 have the same chunk decomposition, l occurs in an i-chunk in
both halves of the square.

From our knowledge of the ruler sequence, for any two occurrences of i within
Rn there exists an i+ 1 between them, and so α(i+ 1)[−1] is contained within
yy. Finally, from Lemma 36 we have that α(i + 1)[−1] > α(i)[−1] ≥ l, which
contradicts our choice of l.

Remark 49. We can see from the properties of the ruler sequence that Lemma 31,
Lemma 36, and Lemma 29 apply analogously to the morphism ρ ◦ α. Then the
proof of Lemma 48 can be easily adapted to show that if w is square-free, then
any square in wρ(α(L(ε))) contains no letter greater than max(wρ(α(0))). This
will be used in Lemma 51 to prove that Aρ(α(L(ε))) is square-free.
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Now we can prove Theorem 1.

Theorem 1. Let Y1 be the 5177-letter prefix of L(1). Then L(1) = Y1 α(L(ε)).

Proof. We first show that Y1α(L(ε)) is square-free. Indeed, suppose that Y1α(L(ε))
contains a square. Since Y1 and α(L(ε)) are square-free, the square must start
in Y1. We can verify by computation that Y1α(R2) is square-free, so the square
must end after α(R2). Hence it contains α(2)[−1] = 5. But by Lemma 48,
the square cannot contain any letter larger than max(Y1α(0)) = 4. This is a
contradiction so Y1α(L(ε)) is square-free.

We can check by direct computation that L(1) = L(Y1G). Then using
Remark 4 with p = G, w = L(G), and u = Y1, and Corollary 47, we obtain that

L(1) = L(Y1G) = Y1 L(G) = Y1α(L(ε)).

The structure of L(n) for n ≥ 3 is similar to that of L(1), although the prefix
is different and the morphism α is replaced with the composition ρ ◦ α. From
Theorem 24, we know that L(n) has prefix nT (n) which has length exponential
in n. This is followed by A, a constant word of length 13747 which can be easily
found computationally. It is noteworthy that A has prefix ψ2(0)

+.

Theorem 2. For all n ≥ 3, L(n) = Yn ρ(α(L(ε))), where Yn = nT (n)A.

In order to prove that n generates nT (n)Aρ(α(ε)), we need first to show
that it is square-free and then show that Aρ(α(ε)) is irreducible. We begin with
some lemmas used to prove the square-free condition.

Lemma 50. For n ≥ 3, nT (n)A is square-free.

Proof. From Theorem 24 we know that nT (n) is square-free and we can verify
that A is square-free computationally, so any square would have to overlap both
factors. We can also computationally check the cases n = 3, 4, 5, so assume
n ≥ 6 and suppose that nT (n)A contains a square yy.

From Remark 25 we have that T (n) has suffix T (6). We can computa-
tionally verify that T (6)A is square-free, so the square contains T (6). Since
max(T (6)A) = 6, then let k be the largest letter in the square, we have that
k ≥ 6. Also, max(A) = 5, so all occurrences of k are in nT (n). Since both
halves contain at least one letter k, then the center of the square lies in nT (n).

Recall that A begins with ψ2(0)
+ which never occurs in nT (n) = ψ2((n −

2)P0(n− 2)) by Lemma 19. Since the first half is contained in nT (n), y cannot
contain ψ2(0)

+. The second half of the square starts in nT (n), but it cannot
contain all of ψ2(0)

+ at the beginning of A. Therefore, the square is a factor of

nT (n)ψ2(0)[: −1] = ψ2((n− 2)Rn−2[: −1](n− 2)Rn−2[: −1])[: −1].

We first consider that Rn−2[: −1](n − 2)Rn−2[: −1] = Rn−1[: −1] is square-
free, so by Proposition 20, ψ2(Rn−2Rn−2[: −1]) is square-free meaning that the
square intersects the first chunk, ψ2(n− 2).
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This means that the square contains all of the middle occurrence of ψ2(n− 2)
which contains four occurrences of n. Since yy contains n and max(nT (n)) = n
we have n = k. Also, there are exactly 8 occurrences of n in nT (n)A, 4 in each
occurrence of ψ2(n−2). The square yy must include the last 4 occurrences of n
and either none of the earlier ones, just the last 6 n’s, or all 8 n’s. Recall that

nT (n)ψ2(0)[: −1] =

ψ2(n− 2) ψ2(Rn−2[: −2]) ψ2(0) ψ2(n− 2) ψ2(Rn−2[: −2]) ψ2(0)[: −1]

and from Equation (1) in Section 3,

ψ2(n− 2) = n Rn Rn[: −2] ψ1(Rn−1[: −1]) n Rn Rn[: −2] ψ1(Rn−1[: −2]),

which shows the locations of the 4 occurrences of n in ψ2(n− 2).
If yy contains only the last 4 occurrences of n, then |y| = |nRnRn[: −2]ψ1(Rn−1[:

−1])|. But yy contains ψ2(0)ψ2(n − 2) which has length more that twice the
length of nRnRn[: −2]ψ1(Rn−1[: −1]). This is a contradiction.

If yy contains only the last 6 occurrences of n, we consider the first and
second n in each half. The first two n’s in the first half occur together as nRn.
But the first two n’s in the second half occur in Rn Rn[: −2] ψ1(Rn−1[: −1]) n.
Clearly, nRn[: −2]ψ1(Rn−1[: −1])n ̸= nRn, so this is a contradiction.

If yy contains all 8 occurrences of n, then it starts at the first letter of nT (n).
Then y = ψ2(n − 2)ψ2(Rn−2[: −2])ψ2(0), but then yy = nT (n)ψ2(0) is not a
factor of nT (n)ψ2(0)[: −1]. So this is also a contradiction.

Lemma 51. Aρ(α(L(ε))) is square-free.

Proof. Suppose Aρ(α(L(ε))) contains a square. Since A is square-free, we
can use Remark 49 to see that the square contains no letter greater than
max(Aρ(α(0))) = 5. Since ρ(α(L(ε))) is square-free, the square overlaps A.
For all letters n ≥ 0, max(ρ(α(n))) = n + 4, so the square would need to be
contained in Aρ(α(R2)) which is a prefix of Aρ(α(L(ε))) that contains 6. We
can computationally verify that Aρ(α(R2)) is square-free which is a contradic-
tion.

Theorem 52. For all n ≥ 3, nT (n)Aρ(α(L(ε))) is square-free.

Proof. Suppose that there is a square yy in nT (n)Aρ(α(L(ε))). We have from
Lemmas 50 and 51 that nT (n)A and Aρ(α(L(ε))) are both square-free. So the
square yy must contain all of A and overlap some nonempty suffix of nT (n) and
some nonempty prefix of ρ(α(L(ε))).

Consider the prefix p := A[: 254] and the suffix s := A[−88 :], and define
w such that A = pws. Since A is totally contained in yy, then at least one of
p or s must be totally contained in y. We will show that p and s each occur
exactly once in nT (n)Aρ(α(L(ε))) = nT (n)pwsρ(α(L(ε))), which leads to a
contradiction, since at least one of p or s must appear in both halves of the
square.
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First we show that p appears exactly once in nT (n)Aρ(α(L(ε))). We can
verify computationally that p occurs exactly once in A. Also, since p begins
with ψ2(0)

+ which by Lemma19 never occurs in nT (n), then p cannot occur in
nT (n). Moreover, if p occurred over the boundary between nT (n) and A, then
since p is a prefix of A, there would be a square in nT (n)A which is not true
according to Lemma 50. Finally, since p ends with 12 and ρ(α(L(ε))) is even-
grounded we conclude that p occurs neither in ρ(α(L(ε))) nor on the boundary
between A and ρ(α(L(ε))).

Secondly, we show that s appears exactly once in nT (n)Aρ(α(L(ε))). It can
be checked that s occurs exactly once in A. To show that s is not contained
in nT (n) = ψ2((n − 2)P0(n − 2)) we use the following properties of s, which
can be verified computationally: s is even-grounded, ψ2(0) does not contain s,
max(s) = 4 and s contains 7 occurrences of 4. Since s is even-grounded and for
all n ≥ 0, ψ2(n) begins and ends with nonzero letters, s cannot lie over a ψ2

chunk boundary. So if s occurs in nT (n), it is within ψ2(k) for some k > 0. We
can computationally verify that s does not occur in ψ2(1) or ψ2(2), so assume
k > 2. Consider that ψ2(k) = ψ1((k + 1)P0(k + 1)) = ψ1((k + 1)Rk+2[: −2])
and that ψ1(ℓ) contains no 4’s when ℓ < 3, two 4’s and no 5’s when ℓ = 3, and
contains 5’s when ℓ > 3. So if s is contained in ψ2(k), it must contain at least
two whole occurrences of ψ1(3), and no whole occurrence of ψ1(4). But since
k > 2, any two occurrences of 3 in (k + 1)Rk+2[: −2] have an occurrence of 4
between them. So s cannot be contained in nT (n).

Note that A begins with 2 and recall from Remark 25 that T (n) has suffix
T (3) which ends with a 1. Hence, since s is grounded, s cannot lie over the
boundary between nT (n) and A. Also, if s occurred over the boundary between
A and ρ(α(L(ε))), then since s is a suffix of A, there would be a square in
Aρ(α(L(ε))), which is not true according to Lemma 51.

Finally we show that s cannot occur in ρ(α(L(ε))). Since s is even-grounded
and has even length, ρ−1(s) is well-defined. Hence, it is enough to show that
ρ−1(s) does not occur in α(L(ε)). The first two letters of ρ−1(s) are 13. For
n ≥ 0, α(n) begins with zero, so 13 cannot occur over a chunk boundary in
α(L(ε)). Also, for n ≥ 1, α(n) is grounded so it does not contain 13. We
can verify directly that ρ−1(s) does not occur in α(0), so s does not occur in
ρ(α(L(ε))).

Proposition 53. For n ≥ 3, L(n) has prefix nT (n)Aρ(G).

Proof. We know from Theorem 24 that L(n) has prefix nT (n). First we show
that L(n) has prefix nT (n)ψ2(0)

+. Indeed, using Remark 25, T (n) has suffix
T (3) which has suffix ψ2(1), which according to Lemma 21 generates ψ2(10).
This means that ψ2(0) at the end of nT (n)ψ2(0) is irreducible. However, ψ2(0)
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also introduces a square:

nT (n)ψ2(0) = nP0(n)P1(n) ψ2(Rn−2Rn−2[: −2])ψ2(0)

= ψ2(n− 2) ψ2(Rn−2[: −1]) ψ2(n− 2)ψ2(Rn−2[: −2])ψ2(0)

= ψ2(n− 2) ψ2(Rn−2[: −1]) ψ2(n− 2)ψ2(Rn−2[: −1])

= ψ2((n− 2)Rn−2[: −1])2.

Therefore nT (n)ψ2(0)
+ is irreducible. It is also square-free by Proposition 52,

since A has prefix ψ2(0)
+.

Now, from Remark 25 we know that nT (n)ψ2(0)
+ has suffix T (3)ψ2(0)

+.
A computer can then verify that this generates T (3)Aρ(G). Since G is a prefix
of α(0) we obtain from Proposition 52 that nT (n)Aρ(G) is square-free, which
concludes the proof.

We can now prove that L(n) = Ynρ(α(L(ε))).

Proof of Theorem 2. From Proposition 53 we get L(n) = L(nT (n)Aρ(G)) =
L(Ynρ(G)). Also, Theorem 26 implies that L(ρ(G)) = ρ(L(G)), so by Corol-
lary 47 we have that

YnL(ρ(G)) = Ynρ(L(G)) = Ynρ(α(L(ε))),

which is square-free by Proposition 52. Hence, Theorem 2 follows from Remark 4
with p = ρ(G), u = Yn and w = L(ρ(G)).

4.3 The structure of L(2)

In this section, we briefly describe a conjectured structure for L(2) that is similar
to the structures of L(n) in the previous sections.

First note that Rn can be written recursively as

R1 = 01,

Rn = Rn−1R
+
n−1.

Define

b2 = 0102012021012,

bn = bn−1b
+
n−1Rn−1R

+
n−1 = bn−1b

+
n−1Rn.

Also, let c3 be the 261-letter word:

c3 = 0102012021012010201202102010210120102012021012010201301020103

0102012021012010201202101301020103010201202101201020120230102

0103010201202101201020120301020103010203010302010203010201030

1020301030201202101201020120210120230102010301020120210120102

01202101301020103,

cn = cn−1c
+
n−1Rn−1R

+
n−1bn−1b

+
n−1Rn−1R

+
n−1

= cn−1c
+
n−1Rnbn.
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Notice that for all n, cn has cn−1 as a prefix. Thus, cn has all previous ck
(3 ≤ k < n) as prefixes and we have

lim
n→∞

cn = c3 c
+
3 R4b4 c

+
4 R5b5 c

+
5 R6b6 · · ·

= c3c
+
3 R4b4 c3c

+
3 R4b

+
4 R5b5 c4c

+
4 R5b

+
5 R6b6 · · ·

= c3c
+
3 R4b4 c3c

+
3 R4b

+
4 R5b5 c3c

+
3 R4b4 c3c

+
3 R4b

+
4 R5b

+
5 R6b6 · · · ,

which gives rise to the following morphism:

Definition. For all n ≥ 0, γ(n) is the morphism defined by

γ(0) = c3c
+
3

γ(n) = R4b
+
4 R5b

+
5 · · ·Rn+2b

+
n+2 Rn+3bn+3.

From the structure of cn and γ, we can see that

lim
n→∞

cn = γ(L(ε)).

Conjecture 3. L(2) = 2 lim
n→∞

cn = 2γ(L(ε)).

5 Extending from known words

In this section we give two results establishing conditions for when L(uv) =
uL(v) for words u and v. If uv is square-free, then so is L(uv). Thus, by
Remark 4, uL(v) being square-free is a necessary and sufficient condition for
L(uv) = uL(v) when uv is square-free. The following result lets us use our
knowledge of L(n) to show that we can omit the square-free condition when u
and v are letters ≥ 3, and Theorem 59 demonstrates a test for the case when
uv is not square-free and has a particular structure. The proof of the latter
theorem does not use Theorem 2.

Lemma 54. For all n1, n2 ≥ 0, if the word n1n2 is not a factor of L(n2), then
L(n1n2) = n1L(n2).

Proof. Since n1n2 never occurs in L(n2) and L(n2) is square-free, n1L(n2) is
square-free unless n1 = n2 in which case its only square factor is the prefix n1n1.
Thus, L(n1n2) and n1L(n2) are both infinite words beginning with n1n2 whose
only square factors are contained in the prefix n1n2. So by the definition of L,
L(n1n2) ≼ n1L(n2). If L(n1n2) ≺ n1L(n2), then L(n1n2)[1 :] ≺ L(n2), which
is a contradiction since these are both infinite square-free words beginning with
n2. Therefore, L(n1n2) = n1L(n2).

This immediately describes all words of the form L(nn):

Theorem 55. For all n ≥ 0, L(nn) = nL(n).

Proof. Since L(n) is square-free, it does not contain nn. The result then follows
from Lemma 54.
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Theorem 56. For all n1 ≥ 3 and n2 ≥ 3, we have L(n1n2) = n1L(n2).

Proof. By Lemma 54, it is sufficient to show that the word n1n2 never appears
in L(n2).

By Theorem 2, L(n2) = Yn2
ρ(α(L(ε))). Since ρ(α(L(ε))) is grounded, it

cannot contain n1n2. Also, the first letter of ρ(α(L(ε))) is 0, so n1n2 cannot lie
over the boundary. For the prefix we have

Yn2
= n2T (n2) = ψ2((n2 − 2)P0(n2 − 2)),

hence it is enough to show that n1n2 does not occur in any ℓ-chunk ψ2(ℓ), nor
over any chunk boundary.

Since max(ψ2(0)) = 3, n1n2 could only occur in a 0-chunk if n1n2 = 33,
which is not a factor of ψ2(0). For the case ℓ ≥ 1, ψ2(ℓ) = ψ1((ℓ+1)P0(ℓ+1)).
Hence, it is sufficient to show that n1n2 cannot occur in any ψ1(ℓ) nor over the
chunk boundary of any ψ1(0ℓ) or ψ1(ℓ0). Indeed, since ψ1(0) = 202101, and
all other ψ1(ℓ) are grounded, then n1n2 cannot occur in any ψ1(ℓ). Also, ψ1(ℓ)
ends with a 1 for all ℓ ≥ 0, so n1n2 cannot occur in ψ1(0ℓ) or in ψ1(ℓ0).

Finally, to show that n1n2 does not occur over any chunk boundary of ψ2

recall that for ℓ ≥ 1, ψ2(ℓ) has suffix

P1(ℓ+ 2) = ψ1(P0(ℓ+ 1)) = ψ1(Rℓ+2[: −2]),

which has suffix ψ1(1), which ends with a 1, so n1n2 cannot lie over a ψ2(ℓ0)
chunk boundary. Also, ψ2(0) ends with 2 so n1n2 cannot lie over a ψ2(0ℓ) chunk
boundary.

Therefore, n1n2 cannot occur anywhere in n1L(n2), except as a prefix. And
so L(n1n2) = n1L(n2).

Experiments suggest the following related result.

Conjecture 57. For all n ≥ 3, we have L(n1) = nL(1) and L(n2) = nL(2).

For example, it appears that L(31) = 3L(1) and L(32) = 3L(2). Since The-
orem 26 implies that L(0n) = ρ(L(n − 1)) for all n > 0, we have a proven or
conjectural description of L(w) for all 2-letter words w except for L(1n) when
n > 1 and L(2n) when n ̸∈ {0, 2}. However, it does appear that these words also
have structures related to the ruler sequence and to the other words discussed
in this paper.

The rest of this section deals with the case when w = uv is not square-
free and is a particular decomposition of w. The next lemma describes this
decomposition.

Lemma 58. Let w be any nonempty finite word containing a square. Then
there is a unique decomposition w = psq such that sq is the maximal square-free
suffix of w, and p[−1]s is the maximal square prefix of p[−1]sq.
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Proof. Any single letter is square-free, so w is guaranteed to have some square-
free suffix. Each suffix of w has a different length, so the maximal square-free
suffix, sq is unique. Since w contains a square, sq is a proper suffix of w, so p is
nonempty and unique.

If p[−1]sq is square-free, then it would be a square-free suffix larger than
sq which is a contradiction. Any square in p[−1]sq cannot be contained in sq
which is square-free, so p[−1]sq has a square prefix. No two distinct prefixes of
have the same length, so the maximal square prefix of p[−1]sq is unique.

Remark. In the w = pqs decomposition in Lemma 58, p and s are always
nonempty, while q can be empty. The last letter of w is always square-free, so
sq is always nonempty. Since w contains a square, we cannot have sq = w so p
is nonempty. Since p[−1] is a single letter, it cannot be a square, so s must be
nonempty.

Example. For w = 012323045, we have that p = 012, s = 323, q = 045.
For w = 1121123210, we have that p = 1121, s = 1, and q = 23210.
For w = 11011, we have that p = 1101, s = 1, and q = ε.

Theorem 59. Let w be any nonempty finite word containing a square. Write
w = psq such that sq is the maximal square-free suffix of w, and p[−1]s is
the maximal square prefix of p[−1]sq. Then L(psq) = pL(sq) if and only if
L(psq)[: 2|ps|] = (pL(sq))[: 2|ps|].

In other words, to verify that L(psq) = pL(sq), it is sufficient to verify
that they match for their first 2|ps| letters. Note that this is potentially use-
ful because L(sq) is the maximal square-free tail of pL(sq). Before proving
Theorem 59, we look at a few examples.

Example. For w = 012323045, since ps = 012323 the theorem implies that
L(012323045) = 012L(323045) if and only if their first 2|ps| = 12 letters match.
Since |w| = 9, and both words have w as a prefix, it is sufficient to compute the
next three letters of each. In this case, both have 010 as their next letters and
so we conclude that L(012323045) = 012L(323045).

For w = 1121123210, since ps = 11211 we obtain that L(1121123210) =
1121L(123210) are equal if and only if they match for the first 2|ps| = 10
letters. Since |w| = 10, no further computations are necessary.

For w = 11011, since ps = 11011 we have that L(11011) = 1101L(1) if
and only if they match for the first 2|ps| = 10 letters. However, in this case
L(11011)[: 10] = 1101120102 ̸= 1101101201 = 1101L(1)[: 10].

Proof of Theorem 59. The forward direction is trivial. We prove the other di-
rection by induction. The base case is our supposition that L(w)[: 2|ps|] =
(pL(sq))[: 2|ps|]. Now suppose L(w)[: n] = (pL(sq))[: n] for some n ≥ 2|ps|.
We will prove that L(w)[: n + 1] = (pL(sq))[: n + 1]. We let a = L(w)[n] and
b = (pL(sq))[n] = L(sq)[n− |p|], then we need to show that a = b.

Suppose that a < b, which implies that (pL(sq))[: n]a has a square suffix.
By the inductive hypothesis, (pL(sq))[: n]a = L(w)[: n]a = L(w)[: n+ 1]. Since
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L(psq) and pL(sq) both begin with w, we have that n+1 > |w|, since otherwise
a = b is a letter of w. Also, since L does not introduce new squares, L(w)[: n+1]
cannot have a square suffix. Therefore we cannot have a < b.

Now suppose that a > b, which analogously to the previous case implies that
L(w)[: n]b has a square suffix, say yy. By the inductive hypothesis, L(w)[: n]b =
(pL(sq))[: n]b = (pL(sq))[: n + 1]. Since sq is square-free, L(sq) is square-free,
so the square must start in the prefix p. Let k be the length of the suffix of p
contained in the square. Then 1 ≤ k ≤ |p| and we have(

pL(sq)
)
[: n]b = p

(
L(sq)[: n− |p|]

)
b

so the square has length

|yy| = k + n− |p|+ 1 ≥ k + 2|ps| − |p|+ 1 = k + |p|+ 2|s|+ 1.

Note that the first half of the square cannot contain all of s, otherwise it would
contain p[−1]s which is a square. This in turn would imply that the second half
contains p[−1]s and is a factor of L(sq) which is square-free. Therefore, the first
half of the square ends within ps[: −1], and so |y| < k + |s|.

This implies that |yy| = 2|y| < 2k + 2|s| ≤ k + |p| + 2|s| which is a contra-
diction since |yy| = k + |p|+ 2|s|+ 1. Therefore, a > b is neither possible.

This proves the inductive step, hence L(w)[: n] = (pL(sq))[: n] for all n, as
wanted.

6 Inducing factors

In this section we consider the following problem. Given a finite square-free
word w, find a word p (not necessarily square-free) such that p generates pw,
i.e. L(p) = L(pw).

Definition. Let w be a finite square-free word. For 0 ≤ j < |w| and 0 ≤ k <
w[j], we call a nonempty word of the form

rj,k(w) = w[: j]k

a restriction of w. That is, rj,k(w) is obtained by starting with w[: j + 1]
and decreasing the last letter by some amount. Let m(w) be the total number
of square-free restrictions of w, and relabel the square-free restrictions in the
lexicographic order as r0(w), . . . , rm−1(w), this is called the restriction sequence
of w.

Example. For the word w = 2021, we have

r0,0 = 0, r0,1 = 1, r2,0 = 200, r2,1 = 201, and r3,0 = 2020.

Taking only the square-free rj,k and sorting them lexicographically, we obtain
that the restriction sequence of w is r0 = 0, r1 = 1, r2 = 201.
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From the definition of lexicographic order, the set of restrictions is always
totally ordered by ≺. For the rest of this section, we will just write rj,k, ri, and
m where the dependence on w is inferred by context.

Intuitively, the restriction sequence of w does the following: Whenever we
extend a word with L, we follow the ruler sequence until we can’t anymore due
to a square. So, to generate w with L, we need to have exactly the right squares
coming up at the right positions to deviate from the ruler sequence and spell
out w instead. The restriction sequence for w is composed of all the words that
will provide those necessary squares.

In other words, the restriction sequence is the collection of all square-free
words that are not longer than w, and are lexicographically less than w. We
then design p so that pri contains a square for all i. Thus, p will generate the
lexicographically least word that is greater than all ri, which is w.

Definition. Let w be a finite square-free word, and let vi(w) = max(w)+ i+1
and Vi(w) = vi · · · v1v0. For i ≤ m = m(w), we define words xi(w) by

x0 = v0,

xi = vixi−1ri−1xi−1,

where vi = vi(w), Vi = Vi(w), and xi = xi(w). This dependence on w will be
inferred by context.

Note that for all j ≤ i, xi has suffix xj and so xm has all xj ’s as suffixes.
Also, for all i, max(ri) ≤ max(w) < v0 < v1 < v2 < · · · and max(xi) = vi.

Example. Continuing with the example w = 2021, since max(w) = 2, we have
vi = i+ 3 for 0 ≤ i ≤ m = 3. Then

x0 = v0 = 3,

x1 = v1x0r0x0 = 4303,

x2 = v2x1r1x1 = 5 4303 1 4303,

x3 = v3x2r2x2 = 6 5430314303 201 5 4303 1 4303.

We can write x3 with spacing suggestive of the next lemma:

x3 = 6543 · 03 · 143 · 03 · 201543 · 03 · 143 · 03
= V3 · r0V0 · r1V1 · r0V0 · r2V2 · r0V0 · r1V1 · r0V0.

Lemma 60. Let w be a finite square-free word, and let ϕw be the morphism
defined on the alphabet {0, 1, . . . ,m} by ϕw(k) = rkVk for letters k. Then for
0 ≤ i ≤ m, xi = Viϕw(Ri[: −1]).

Proof. We proceed by induction. For the base case,

x0 = v0 = V0 = V0ϕw(ε) = V0ϕw(R0[: −1]).

40



For the inductive step, suppose xi = Viϕw(Ri[: −1]) for some i < m. Then

xi+1 = vi+1xirixi

= vi+1Viϕw(Ri[: −1]) ri Viϕw(Ri[: −1])

= Vi+1ϕw(Ri[: −1]) ϕw(i) ϕw(Ri[: −1])

= Vi+1ϕw(Ri[: −1]iRi[: −1])

= Vi+1ϕw(Ri+1[: −1]).

Finally we present the main result of this section, which implies that for every
finite square-free word w, there exists a prefix p that generates pw. Indeed, it
states that such prefix is given by p = xm.

Theorem 61. Let w be a finite square-free word. Then xm generates xmw.

Proof. We will show that for all 0 ≤ j < |w|, xmw[: j] generates xmw[: j + 1].
This means that L(xmw[: j]) = L(xmw[: j+1]), which proves the desired result:

L(xm) = L(xmw[: 0]) = L(xmw[: 1]) = · · · = L(xmw[: |w|]) = L(xmw).

To show that L(xmw[: j]) = L(xmw[: j+1]) we need to prove the last letter
of xmw[: j + 1], which is w[j], is irreducible and does not introduce a square.

First we prove the irreducibility condition. Let 0 ≤ j < |w| and ℓ < w[j],
we need to show that xmw[: j]ℓ has a square suffix. Indeed, since 0 ≤ j < |w|
and 0 ≤ ℓ < w[j], we have that w[: j]ℓ = rj,ℓ(w). If w[: j]ℓ contains a square,
since w is square-free, this must be a square suffix, and we are done. Otherwise,
if w[: j]ℓ is square-free, then w has a restriction ri = w[: j]ℓ for some i < m.
Hence xm has suffix xi+1, which means that xmw[: j]ℓ has suffix

xi+1 w[: j]ℓ = vi+1xirixi ri,

which also has a square suffix. Therefore w[j] is irreducible in xmw[: j + 1].
Now we prove that w[j] does not introduce a square in xmw[: j]. Suppose

toward a contradiction that xmw[: j+1] has square suffix yy. Since w is square-
free, the square must start in the prefix xm, and so y contains the last letter
of xm which is x0 = v0. Hence, since v0 > max(w), y cannot be completely
contained in w. Therefore, the second half of the square starts in xm and
contains all of w[: j + 1]. This implies that y has suffix v0w[: j + 1].

By Lemma 60,

xm = Vmϕw(Rm[: −1]) = Vm · r0V0 · r1V1 · r0V0 · r2V2 · · · r0V0,

where ϕw(k) = rkVk for letters k < |w|. Since y[−1] = w[j] ≤ max(w) and all
letters in any Vk are greater than max(w), we have that the last letter of the
first half of the square is in a factor ri for some i. Therefore, there are no partial
Vk’s in the second half.

Since max(ϕw(k)) = vk > max(w), the largest letter in y is some letter
Vk[0] = vk occurring k-chunk. Let vℓ = max(y), then every occurrence of vℓ in
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the second half of the square is as the first letter of Vℓ in an ℓ-chunk. In order
to contain vℓ, the first half of the square must overlap a k-chunk with k ≥ ℓ.
From the structure of the ruler sequence, we know that the latest k-chunk with
k ≥ ℓ before the first ℓ-chunk in the second half is an (ℓ + 1)-chunk. The first
half cannot contain the letter vℓ+1 in this (ℓ+1)-chunk, but it must include the
letter vℓ. Therefore, vℓ is the first letter of the first half and since there are no
partial Vk’s in the second half, then y has prefix Vℓ. The second half then begins
in the middle of an ℓ-chunk at the beginning of the factor Vℓ and so the first
half has suffix rℓ from the same ℓ-chunk. Before this factor rℓ there is another
chunk, which always ends with v0 and so y has suffix v0rℓ.

We have proved that the words v0w[: j + 1] and v0rℓ are both suffixes of y.
Since v0 > max(w[: j + 1]) and v0 > max(rℓ), we have that rℓ = w[: j + 1].
But this is a contradiction since the restriction rℓ cannot be a prefix of w. This
proves that no such square exists and the result follows.

Example. Again using w = 2021, we can verify that

x3 = 654303143032015430314303 generates x3w,

for example the suffix 303 prevents a 0, the suffix 430314303 prevents a 1, so
since 2 does not introduce a square, it can be located after this suffix. Similarly,
we can continue checking that the whole word w is the lexicographically least
extension of x3.

7 Glossary

A list of all the important mathematical objects in the paper, along with their
definitions.

7.1 Sequences of Words

Rn is defined for all letters n ≥ 0, and is the ruler sequence up to the first
appearance of n. We can also define Rn by Rn = ρn(0), or inductively by
R0 = 0 and Rn = Rn−1R

+
n−1. Rn is always even-grounded, the length of Rn is

2n, and max(Rn) = n.
bn is defined for letters n ≥ 2, and is defined inductively by b2 = 0102012021012

and bn = bn−1b
+
n−1Rn. bn is never grounded, the length of bn is 2n−2(4n + 5),

and max(bn) = n.
cn is defined for letters n ≥ 3, and is defined inductively by cn = cn−1c

+
n−1Rnbn

with a base case c3 of length 261. cn is never grounded, the length of cn is
2n−3(4n2 + 22n+ 159), and max(cn) = n.

7.2 Functions on Letters

P0(n) is defined for all letters n ≥ 0, and is the largest prefix of the ruler
sequence such that nP0(n) is a prefix of L(n). The length of P0(n) is 2

n+1 − 2,
so P0(n) = Rn+1[: −2].
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P1(n) is defined for letters n ≥ 3, and is equal to ψ1(P0(n− 1)). The length
of P1(n) is (4n+ 1)2n−1 − 5.

P2(n) is defined for letters n ≥ 3, and is equal to ψ2(P0(n− 2)). The length
of P2(n) is (4n

2 + 14n+ 149)2n−2 − 193.
T (n) is defined for letters n ≥ 3, and is equal to P0(n)P1(n)P2(n). The

length of T (n) is (4n2 + 22n+ 159)2n−2 − 200.

7.3 Morphisms

The ruler morphism ρ is defined by ρ(n) = 0(n+ 1).
ψ1 is defined by ψ1(0) = 202101 and ψ1(n) = (n + 1)P0(n + 1) for n > 0.

The length of ψ1(n) is 2
n+2 − 1 for n > 0.

ψ2 is defined by ψ2(n) = (n+ 2)P0(n+ 2)P1(n+ 2) for n > 0, with ψ2(0) a
specific word of length 199. For n > 0, the length of ψ2(n) is (4n+13)2n+1− 6.

α is defined by

α(n) =


EFE if n = 0

B1 R4 C B1 R4 if n = 1

α(n− 1)+ Rn+3 C α(n− 1)+ Rn+3 if n ≥ 2

for constants C, B0, B1, E, and F .

7.4 Constants

ε is the empty word.
C = 0102030102 is a grounded word of length 10 which is used in the in-

ductive definition of α. While not mathematically relevant, we would be remiss
not to note that coding C into letters yields the word abacadabac, which is
amusingly similar to abracadabra.

B0 = 0301 ψ1(1010)[: −3] ψ2(1010)[: −6] ψ2(10)[: −12] 301020 is a non-
grounded word of length 798 which is used in the definition of α(0).

B1 = ρ(B0[7 : −5]) is a grounded word of length 1572 which is used in the
definition of α(1), which is the base case for the inductive definition of α.

E = 0102B01B0[: −9] and F = B0[−9 :]3010302C0103C+02. These are
useful in the structure of α because EFE = α(0).

G = 010203012 is a word of length 9, which is the shortest prefix that
generates α(0) and appears in various proofs.

A is a word of length 13747 with the property that nT (n)A is a prefix of
L(n) for all n ≥ 3.
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