
PATTERN AVOIDANCE IN BINARY TREES

ERIC S. ROWLAND

Abstract. This paper considers the enumeration of trees avoiding a contigu-

ous pattern. We provide an algorithm for computing the generating function

that counts n-leaf binary trees avoiding a given binary tree pattern t. Equipped
with this counting mechanism, we study the analogue of Wilf equivalence in

which two tree patterns are equivalent if the respective n-leaf trees that avoid

them are equinumerous. We investigate the equivalence classes combinato-
rially, finding some relationships to Dyck words avoiding a given subword.

Toward establishing bijective proofs of tree pattern equivalence, we develop a

general method of restructuring trees that conjecturally succeeds to produce
an explicit bijection for each pair of equivalent tree patterns.

1. Introduction

Determining the number of words of length n on a given alphabet that avoid
a certain (contiguous) subword is a classical combinatorial problem that can be
solved, for example, by the principle of inclusion–exclusion. An approach to this
question using generating functions is provided by the Goulden–Jackson cluster
method [6, 10], which utilizes only the self-overlaps (or “autocorrelations”) of the
word being considered. A natural question is “When do two words have the same
avoiding generating function?” That is, when are the n-letter words avoiding (re-
spectively) w1 and w2 equinumerous for all n? The answer is simple: precisely
when their self-overlaps coincide. For example, the equivalence classes of length-4
words on the alphabet {0, 1} are as follows.

equivalence class self-overlap lengths
{0001, 0011, 0111, 1000, 1100, 1110} {4}
{0010, 0100, 0110, 1001, 1011, 1101} {1, 4}

{0101, 1010} {2, 4}
{0000, 1111} {1, 2, 3, 4}

In this paper we consider the analogous questions for plane trees. All trees in the
paper are rooted and ordered. The depth of a vertex is the length of the minimal
path to that vertex from the root, and depth(T) is the maximum vertex depth in
the tree T .

Our focus will be on binary trees — trees in which each vertex has 0 or 2 (ordered)
children. A vertex with 0 children is a leaf, and a vertex with 2 children is an internal
vertex. A binary tree with n leaves has n− 1 internal vertices, and the number of
such trees is the Catalan number Cn−1. The first few binary trees are depicted in
Figure 1. We use an indexing for n-leaf binary trees that arises from the natural
recursive construction of all n-leaf binary trees by pairing each k-leaf binary tree

Date: February 8, 2010.

1

2 Eric Rowland

t1 t1 t1 t2

t1 t2 t3 t4 t5

t1 t2 t3 t4 t5 t6 t7

t8 t9 t10 t11 t12 t13 t14

Figure 1. The binary trees with at most 5 leaves.

with each (n− k)-leaf binary tree, for all 1 ≤ k ≤ n− 1. In practice it will be clear
from context which tree we mean by, for example, ‘t1’.

Conceptually, a binary tree T avoids a tree pattern t if there is no instance of t
anywhere inside T . Steyaert and Flajolet [15] were interested in such patterns in
vertex-labeled trees. They were mainly concerned with the asymptotic probability
of avoiding a pattern, whereas our focus is on enumeration. However, they establish
in Section 2.2 that the total number of occurrences of an m-leaf binary tree pattern
t in all n-leaf binary trees is (

2n−m
n−m

)
.

In this sense, all m-leaf binary trees are indistinguishable; the results of this paper
refine this statement by further distinguishing m-leaf tree patterns by the number
of n-leaf trees containing precisely k copies of each.

We remark that a different notion of tree pattern was later considered by Flajo-
let, Sipala, and Steyaert [5], in which every leaf of the pattern must be matched by
a leaf of the tree. Such patterns are only matched at the bottom of a tree, so they
arise naturally in the problem of compactly representing in memory an expression
containing repeated subexpressions. The enumeration of trees avoiding such a pat-
tern is simple, since no two instances of the pattern can overlap: The number of
n-leaf binary trees avoiding t depends only on the number of leaves in t. See also
Flajolet and Sedgewick [4, Note III.40].

The reason for studying patterns in binary trees as opposed to rooted, ordered
trees in general is that it is straightforward to determine what it should mean for
a binary tree to avoid, for example,

t7 = ,

whereas a priori it is ambiguous to say that a general tree avoids

.

Pattern avoidance in binary trees 3

Namely, for general trees, ‘matches a vertex with i children’ for i ≥ 1 could mean
either ‘has exactly i children’ or ‘has at least i children’. For binary trees, these are
the same for i = 2, so there is no choice to be made.

However, it turns out that the notion of pattern avoidance for binary trees in-
duces a well-defined notion of pattern avoidance for general trees. This arises via
the natural bijection β between the set of n-leaf binary trees and the set of n-
vertex trees; using this bijection, one simply translates the problem into the setting
of binary trees.

One main theoretical purpose of this paper is to provide an algorithm for com-
puting the generating function that counts binary trees avoiding a certain tree
pattern. This algorithm easily generalizes to count trees containing a prescribed
number of occurrences of a certain pattern, and additionally we consider the num-
ber of trees containing several patterns each a prescribed number of times. All of
these generating functions are algebraic. Section 4 is devoted to these algorithms,
which are implemented in TreePatterns [11], a Mathematica package available
from the author’s website.

By contrast, another main purpose of this paper is quite concrete, and that is to
determine equivalence classes of binary trees. We say that two tree patterns s and t
are equivalent if for all n ≥ 1 the number of n-leaf binary trees avoiding s is equal to
the number of n-leaf binary trees avoiding t. In other words, equivalent trees have
the same generating function with respect to avoidance. This is the analogue of Wilf
equivalence in permutation patterns. Each tree is trivially equivalent to its left–
right reflection, but there are other equivalences as well. The first few classes are
presented in Section 3. The appendix contains a complete list of equivalence classes
of binary trees with at most 6 leaves, from which we draw examples throughout
the paper. Classes are named with the convention that class m.i is the ith class of
m-leaf binary trees.

We seek to understand equivalence classes of binary trees combinatorially, and
this is the third purpose of the paper. By analogy with words, one might hope
for a simple criterion such as “s and t are equivalent precisely when the lengths
of their self-overlaps coincide”; however, although the set of self-overlap lengths
seems to be preserved under equivalence, this statement is not true, for {1, 1, 2, 2, 5}
corresponds to both classes 6.3 and 6.7. In lieu of a simple criterion, we look for
bijections. As discussed in Section 3.5, in a few cases there is a bijection between
n-leaf binary trees avoiding a certain pattern and Dyck (n − 1)-words avoiding a
certain (contiguous) subword. In general, when s and t are equivalent tree patterns,
we would like to provide a bijection between trees avoiding s and trees avoiding t.
Conjecturally, all classes of binary trees can be established bijectively by top-down
and bottom-up replacements; this is the topic of Section 5. Nearly all bijections in
the paper are implemented in the package TreePatterns.

Aside from mathematical interest, a general study of pattern avoidance in trees
has applications to any collection of objects related by a tree structure, such as
people in a family tree or species in a phylogenetic tree. In particular, this paper
answers the following question. Given n related objects (e.g., species) for which
the exact relationships aren’t known, how likely is it that some prescribed (e.g.,
evolutionary) relationship exists between some subset of them? (Unfortunately,
it probably will not lead to insight regarding the practical question “What is the
probability of avoiding a mother-in-law?”) Alternatively, we can think of trees

4 Eric Rowland

� � � �

� � � �

� � � �

� �

Figure 2. The Harary–Prins–Tutte correspondence β between bi-
nary trees with 5 leaves and trees with 5 vertices.

as describing the syntax of sentences in natural language or of fragments of com-
puter code; in this context the paper answers questions about the occurrence and
frequency of given phrase substructures.

2. Definitions

2.1. The Harary–Prins–Tutte bijection. We first recall a fundamental bijec-
tion between n-leaf binary trees and general (rooted, ordered) n-vertex trees. The
bijection was given by Harary, Prins, and Tutte [7] and simplified by de Bruijn and
Morselt [1]. Following Knuth [9, Section 2.3.2], we use a modified version in which
the trees are de-planted. (An extra vertex is used by those authors because they
think of these objects as trivalent trees.) The correspondence for n = 5 is shown in
Figure 2. Throughout the paper we shall call this bijection β. That is,

β : (set of binary trees)→ (set of all trees).

To obtain the n-vertex tree β(T) associated with a given n-leaf binary tree T ,
contract every rightward edge to a single vertex.

The inverse map is a little more tedious to describe; however, one simply reverses
the algorithm. To obtain the n-leaf binary tree β−1(T) associated with a given n-
vertex tree T :

(1) Delete the root vertex.
(2) For each remaining vertex, let its new left child be its original leftmost

child (if it exists), and let its new right child be its original immediate right
sibling (if it exists).

(3) Add children to the existing vertices so that each has two children. (If a
vertex has only one child, the new child is added in place of the child missing
in step 2.) Note that the leaves of the final binary tree are precisely the
vertices added in this step.

For example,

T =
(1)→ (2)→ (3)→ = β−1(T).

Pattern avoidance in binary trees 5

If T is an n-vertex tree, then clearly β−1(T) is a binary tree, and β−1(T) has n
leaves because the n−1 vertices present in step 2 are precisely the internal vertices
of β−1(T).

Of course, β is chiral in the sense that there is another, equally good bijection
ρβρ 6= β, where ρ is left–right reflection (which acts by reversing the order of the
children of each vertex); but it suffices to employ just one of these bijections.

2.2. Avoidance. The more formal way to think of an n-vertex tree is as a partic-
ular arrangement of n pairs of parentheses, where each vertex is represented by the
pair of parentheses containing its children. For example, the tree

T =

is represented by (()(()())). This is the word representation of this tree in the
alphabet {(,)}. We do not formally distinguish between the graphical represen-
tation of a tree and the word representation, and it is the latter that is useful in
manipulating trees algorithmically. (Mathematica’s pattern matching capabilities
provide a convenient tool for working with trees represented as nested lists, so this
is the convention used by TreePatterns.)

Informally, our concept of containment is as follows. A binary tree T contains
t if there is a (contiguous, rooted, ordered) subtree of T that is a copy of t. For
example, consider

t = .

None of the trees

contains a copy of t, while each of the trees

contains precisely one copy of t, each of the trees

contains precisely two (possibly overlapping) copies of t, and the tree

contains precisely three copies of t. This is a classification of binary trees with at
most 5 leaves according to the number of copies of t.

We might formalize this concept with a graph theoretic definition as follows. Let
t be a binary tree. A copy of t in T is a subgraph of T (obtained by removing ver-
tices) that is isomorphic to t (preserving edge directions and the order of children).
Naturally, T avoids t if the number of copies of t in T is 0.

An equivalent but much more useful definition is a language theoretic one, and
to provide this we first distinguish a tree pattern from a tree.

6 Eric Rowland

By ‘tree pattern’, informally we mean a tree whose leaves are “blanks” that
can be filled (matched) by any tree, not just a single vertex. More precisely, let
Σ = {(,)}, and let L be the language on Σ containing (the word representation
of) every binary tree. Consider a binary tree τ , and let t be the word on the
three symbols (,), L obtained by replacing each leaf () in τ by L. We call t
the tree pattern of τ . This tree pattern naturally generates a language Lt on Σ,
which we obtain by interpreting the word t as a product of the three languages
(= {(},) = {)}, L. Informally, Lt is the set of words that match t. We think of t
and Lt interchangeably. (Note that a tree is a tree pattern matched only by itself.)

For example, let

τ = = (()(()()));

then the corresponding tree pattern is t = (L(LL)), and the language Lt consists
of all trees of the form (T(UV)), where T,U, V are binary trees.

Let Σ∗ denote the set of all finite words on Σ. The language Σ∗LtΣ∗ ∩ L is the
set of all binary trees whose word has a subword in Lt. Therefore we say that a
binary tree T contains the tree pattern t if T is in the language Σ∗LtΣ∗∩L. We can
think of this language as a multiset, where a given tree T occurs with multiplicity
equal to the number of ways that it matches Σ∗LtΣ∗. Then the number of copies
of t in T is the multiplicity of T in Σ∗LtΣ∗ ∩ L.

Continuing the example from above, the tree

T = = (()((()())(()())))

contains 2 copies of t since it matches Σ∗LtΣ∗ in 2 ways: (T(UV)) with T = ()
and U = V = (()()), and (()(T(UV))) with T = (()()) and U = V = ().

Our notation distinguishes tree patterns from trees: Tree patterns are repre-
sented by lowercase variables, and trees are represented by uppercase variables. To
be absolutely precise, we would graphically distinguish between terminal leaves ()
of a tree and blank leaves L of a tree pattern, but this gets in the way of speaking
about them as the same objects, which is rather convenient.

In Sections 4 and 5 we will be interested in taking the intersection p ∩ q of tree
patterns p and q (by which we mean the intersection of the corresponding languages
Lp and Lq). The intersection of two or more explicit tree patterns can be computed
recursively: p ∩ L = p, and (plpr) ∩ (qlqr) = ((pl ∩ ql)(pr ∩ qr)).

2.3. Generating functions. Our primary goal is to determine the number an
of binary trees with n vertices that avoid a given binary tree pattern t, and more
generally to determine the number an,k of binary trees with n vertices and precisely
k copies of t. Thus we consider two generating functions associated with t: the
avoiding generating function

Avt(x) =
∑

T avoids t

xnumber of vertices in T =
∞∑
n=0

anx
n

Pattern avoidance in binary trees 7

and the enumerating generating function

EnL,t(x, y) =
∑
T∈L

xnumber of vertices in T ynumber of copies of t in T

=
∞∑
n=0

∞∑
k=0

an,kx
nyk.

The avoiding generating function is the special case Avt(x) = EnL,t(x, 0).

Theorem 1. EnL,t(x, y) is algebraic.

The proof is constructive, so it enables us to compute EnL,t(x), and in particular
Avt(x), for explicit tree patterns. We postpone the proof until Section 4.2 to address
a natural question that arises: Which trees have the same generating function?
That is, for which pairs of binary tree patterns s and t are the n-leaf trees avoiding
(or containing k copies of) these patterns equinumerous?

We say that s and t are avoiding-equivalent if Avs(x) = Avt(x). We say
they are enumerating-equivalent if the seemingly stronger condition EnL,s(x, y) =
EnL,t(x, y) holds. We can compute these equivalence classes explicitly by comput-
ing Avt(x) and EnL,t(x, y) for, say, all m-leaf binary tree patterns t. In doing this
for binary trees with up to 7 leaves, one comes to suspect that these conditions are
in fact the same.

Conjecture 2. If s and t are avoiding-equivalent, then they are also enumerating-
equivalent.

In light of this experimental result, we focus attention in the remainder of the
paper on classes of avoiding-equivalence, since conjecturally they are the same as
classes of enumerating-equivalence.

3. Initial inventory and some special bijections

In this section we undertake an analysis of small patterns. We determine Avt(x)
for binary tree patterns with at most 4 leaves using methods specific to each. This
allows us to establish the equivalence classes in this range.

3.1. 1-leaf trees. There is only one binary tree pattern with a single leaf, namely

t = = L.

Every binary tree contains at least one vertex, so Avt(x) = 0. The number of
binary trees with 2n− 1 vertices is Cn−1, so

EnL(x) = x+ x3 + 2x5 + 5x7 + 14x9 + 42x11 + · · · =
∞∑
n=1

Cn−1x
2n−1.

3.2. 2-leaf trees. There is also only one binary tree pattern with precisely 2 leaves:

t = = (LL).

However, t is a fairly fundamental structure in binary trees; the only tree avoiding
it is the 1-vertex tree (). Thus Avt(x) = x, and

EnL,t(x, y) =
∞∑
n=1

Cn−1x
2n−1yn−1 =

1−
√

1− 4x2y

2xy
.

8 Eric Rowland

3.3. 3-leaf trees. There are C2 = 2 binary trees with 3 leaves, and they are
equivalent by left–right reflection:

and .

There is only one binary tree with n leaves avoiding

= ((LL)L),

namely the “right comb” (()(()(()(() · · ·)))). Therefore for these trees

Avt(x) = x+ x3 + x5 + x7 + x9 + x11 + · · · = x

1− x2
.

3.4. 4-leaf trees. Among 4-leaf binary trees we find more interesting behavior.
There are C3 = 5 such trees, pictured as follows.

They comprise 2 equivalence classes.

Class 4.1. The first equivalence class consists of the trees

t1 = and t5 = .

The avoiding generating function Avt(x) for each of these trees satisfies

x3f2 + (x2 − 1)f + x = 0

because the number of n-leaf binary trees avoiding t1 is the Motzkin number Mn−1:

Avt(x) = x+ x3 + 2x5 + 4x7 + 9x9 + 21x11 + · · · =
∞∑
n=1

Mn−1x
2n−1.

This fact is presented by Donaghey and Shapiro [3] as their final example of
objects counted by the Motzkin numbers. They provide a bijective proof which we
reformulate here. Specifically, there is a natural bijection between the set of n-leaf
binary trees avoiding t1 and the set of Motzkin paths of length n− 1 — paths from
(0, 0) to (n− 1, 0) composed of steps 〈1,−1〉, 〈1, 0〉, 〈1, 1〉 that do not go below the
x-axis. We represent a Motzkin path as a word on {−1, 0, 1} encoding the sequence
of steps under 〈1,∆y〉 7→ ∆y. The bijection is as follows.

Recall the map β from Section 2.1. To obtain the Motzkin path associated with
a binary tree T avoiding t1:

(1) Let T ′ = β(T). No vertex in T ′ has more than 2 children, since

β(t1) =

and T avoids t1.
(2) Create a word w on {−1, 0, 1} by traversing T ′ in depth-first order (i.e., for

each subtree visit first the root vertex and then its children trees in order);
for each vertex, record 1 less than the number of children of that vertex.

(3) Delete the last letter of w (which is −1).

Pattern avoidance in binary trees 9

The resulting word contains the same number of −1s and 1s, and every prefix
contains at least as many 1s as −1s, so it is a Motzkin path. The steps are easily
reversed to provide the inverse map from Motzkin paths to binary trees avoiding
t1. (For the larger context of this bijection, see Stanley’s presentation leading up
to Theorem 5.3.10 [14].)

Class 4.2. The second equivalence class consists of the three trees

t2 = , t3 = , and t4 =

and provides the smallest example of nontrivial equivalence. Symmetry gives
Avt2(x) = Avt4(x). To establish Avt2(x) = Avt3(x), for each of these trees t we
give a bijection between n-leaf binary trees avoiding t and binary words of length
n− 2. By composing these two maps we obtain a bijection between trees avoiding
t2 and trees avoiding t3.

First consider

t3 = .

If T avoids t3, then no vertex of T has four grandchildren; that is, at most one of
a vertex’s children has children of its own. This implies that at each generation at
most one vertex has children. Since there are two vertices at each generation after
the first, the number of such n-leaf trees is 2n−2 for n ≥ 2:

Avt3(x) = x+x3 + 2x5 + 4x7 + 8x9 + 16x11 + · · · = x+
∞∑
n=2

2n−2x2n−1 =
x(1− x2)
1− 2x2

.

Form a word w ∈ {0, 1}n−2 corresponding to T by letting the ith letter be 0 or 1
depending on which vertex (left or right) on level i+ 1 has children.

Now consider

t2 = .

A “typical” binary tree avoiding t2 looks like

and is determined by the length of its spine and the length of each arm. Starting
from the root, traverse the internal vertices of a tree T avoiding t2 according to
the following rule. Always move to the right child of a vertex when the right
child is an internal vertex, and if the right child is a leaf then move to the highest
unvisited internal spine vertex. By recording 0 and 1 for left and right movements
in this traversal, a word w on {0, 1} is produced that encodes T uniquely. We have
|w| = n− 2 since we obtain one symbol from each internal vertex except the root.
Since every word w corresponds to an n-leaf binary tree avoiding t2, there are 2n−2

such trees.

10 Eric Rowland

More formally, let ω be a map from binary trees to binary words defined by
ω((TlTr)) = κ1(Tr)κ0(Tl), where

κi(T) =

{
ε if T = ()

i ω(T) otherwise.

Then the word corresponding to T is w = ω(T).
For the inverse map ω−1, begin with the word (lr). Then read w left to right.

When the symbol 1 is read, replace the existing r by (()r); when 0 is read, replace
the existing r by () and the existing l by (lr). After the entire word is read, replace
the remaining l and r with (). One verifies that T has n leaves. The tree T avoids
t2 because the left child of an r vertex never has children of its own.

3.5. Bijections to Dyck words. In Section 2.2 we assigned a word on the alpha-
bet {(,)} to each tree. In this section we use a slight variant of this word that is
more widely used in the literature. This is the Dyck word on the alphabet {0, 1},
which differs from the aforementioned word on {(,)} in that the root vertex is
omitted. For example, the Dyck word of

is 01001011. Omitting the root allows consistency with the definition of a Dyck
word as a word consisting of n 0s and n 1s such that no prefix contains more 1s
than 0s. It is mnemonically useful to think of the letters in the Dyck word as the
directions (down or up) taken along the edges in the depth-first traversal of the
tree.

Because trees and Dyck words are essentially the same objects, one expects
questions about pattern avoidance in trees to have an interpretation as questions
about pattern avoidance in Dyck words. Specifically, the set of trees avoiding a
certain tree pattern corresponds to the set of Dyck words avoiding a (not necessarily
contiguous) “word pattern”. This is simply a consequence of the bijection between
trees and Dyck words.

However, in some cases there is a stronger relationship: The set of trees avoiding
a certain pattern is in natural bijection to the set of Dyck words avoiding a certain
contiguous subword. This relationship is the subject of the current section, in which
we give several such bijections. For each equivalence class of trees we will be content
with one bijection to Dyck words, although in many cases there are several.

Notes on sequences counting Dyck words avoiding a subword have been con-
tributed by David Callan and Emeric Deutsch to the Encyclopedia of Integer Se-
quences [13]. The subject appears to have begun with Deutsch [2, Section 6.17],
who enumerated Dyck words according to the number of occurrences of the subword
100. Sapounakis, Tasoulas, and Tsikouras [12] have considered additional subwords.
Via the bijections described below, their results provide additional derivations of
the generating functions Avt(x).

In Section 3.4 we observed that trees avoiding a tree pattern in class 4.1 are in
bijection to Motzkin paths. From here it is easy to establish a bijection to Dyck
words avoiding the subword 000. Simply apply the morphism

1→ 001, 0→ 01, −1→ 1

Pattern avoidance in binary trees 11

to the Motzkin path. Clearly the resulting word has no instance of 000, and it is a
Dyck word because 1 and −1 occur in pairs in a Motzkin path, with every prefix
containing at least as many 1s as −1s.

A different and more direct bijection to Dyck words avoiding 000 (and the one
that we will generalize to other tree patterns) can be obtained as follows. Consider
the 4-leaf binary tree

t5 = ;

then

β(t5) = ,

whose Dyck word is 000111. The map β of Section 2.1 preserves a certain feature of
any binary tree T containing t5: β(T) contains a sequence of four vertices in which
each of the lower three is the first child of the previous. In other words, let T be
a tree obtained by replacing the leaves of t5 with any binary trees. Then β(T) is
obtained from β(t5) by adding vertices as either children or right siblings — never
as left siblings — to those in β(t5). Therefore 000 is characteristic of t5 in the sense
that T contains t5 if and only if the Dyck word of β(T) contains 000.

And of course this bijection works for any left comb (i.e., class m.1 for all m): The
binary trees avoiding the m-leaf left comb are in bijection to Dyck words avoiding
0m−1.

In general there is a natural bijection between n-leaf binary trees avoiding t and
(n− 1)-Dyck words avoiding w whenever w is a characteristic feature of β(t) (that
is, some feature of the tree that is preserved locally by β).

For example, for the binary trees in class 4.2 we have

β

()
= , β

()
= , β

()
= .

Which of these patterns have a bijection to Dyck words? Consider the third tree,

= 001011.

While it is true that any tree containing this tree must contain 001, the converse is
not true, so this tree does not admit a bijection to Dyck words. However, the two
trees

= 010011 and = 001101

contain the word 100 and its reverse complement 110 respectively, and containing
one of these subwords is a necessary and sufficient condition for the corresponding
tree to contain the respective tree pattern. Thus binary trees avoiding a tree pattern
in class 4.2 are in bijection to Dyck words avoiding 100.

Bijections for other patterns can be found similarly. Binary trees avoiding a tree
pattern in class 5.2 are in bijection to Dyck words avoiding 1100, via

β

()
= .

Class 5.3 corresponds to 1000 via

β

()
= .

12 Eric Rowland

Class 6.3 corresponds to 11000 and class 6.6 to 10000 via

β

()
= and β

 =

respectively.
It is apparent that results of this kind involve “two-pronged” trees because avoid-

ance for these trees corresponds to a local condition on Dyck words. It should not
be surprising then that not all equivalence classes of binary trees have a correspond-
ing Dyck word class. For example, classes 6.2, 6.4, 6.5, and 6.7 do not. The lack
of a Dyck word class can be proven in each case by exhibiting an n such that the
number of n-leaf binary trees avoiding t is not equal to the number of (n− 1)-Dyck
words avoiding w for all w; only a finite amount of computation is required because
all Cn−1 (n−1)-Dyck words avoid w for |w| > 2(n−1). For example, n = 8 suffices
for classes 6.2 and 6.5.

4. Algorithms

In this section we provide algorithms for computing algebraic equations satisfied
by Avt(x), EnL,t(x, y), and the more general EnL,p1,...,pk

(xL, xp1 , . . . , xpk
) defined

in Section 4.3. Computing Avt(x) or EnL,t(x, y) for all m-leaf binary tree patters t
allows one to automatically determine the equivalence classes given in the appendix.

We draw upon the notation introduced in Section 2.2. In particular, the inter-
section p ∩ p′ of two tree patterns plays a central role. Recall that Lp is the set of
trees matching p at the top level.

4.1. Avoiding a single tree. Fix a binary tree pattern t we wish to avoid. For a
given tree pattern p, we will make use of the generating function

weight(p) = weight(Lp) :=
∑
T∈Lp

weight(T),

where

weight(T) =

{
xnumber of vertices in T if T avoids t
0 if T contains t.

The case t = L was covered in Section 3.1, so we assume t 6= L. Then t = (tltr)
for some tree patterns tl and tr. Since (TlTr) matches t precisely when Tl matches
tl and Tr matches tr, we have

(1) weight((plpr)) =

x ·
(
weight(pl) · weight(pr)− weight(pl ∩ tl) · weight(pr ∩ tr)

)
.

The coefficient x is the weight of the root vertex of (plpr) that we destroy in
separating this pattern into its two subpatterns.

We now construct a polynomial (with coefficients that are polynomials in x) that
is satisfied by Avt(x) = weight(L), the weight of the language of binary trees. The
algorithm is as follows.

Begin with the equation

weight(L) = weight(()) + weight((LL)).

Pattern avoidance in binary trees 13

The variable weight((LL)) is “new”; we haven’t yet written it in terms of other
variables. So use Equation (1) to rewrite weight((LL)). For each expression
weight(p ∩ p′) that is introduced, we compute the intersection p ∩ p′. This al-
lows us to write weight(p∩p′) as weight(q) for some pattern q that is simply a word
on {(,), L} (i.e., does not contain the ∩ operator).

For each new variable weight(q), we obtain a new equation by making it the left
side of Equation (1), and then as before we eliminate ∩ by explicitly computing
intersections.

We continue in this manner until there are no new variables produced. This must
happen because depth(p ∩ p′) = max(depth(p),depth(p′)), so since there are only
finitely many trees that are shallower than t, there are only finitely many variables
in this system of polynomial equations.

Finally, we compute a Gröbner basis for the system in which all variables ex-
cept weight(()) = x and weight(L) = Avt(x) are eliminated. This gives a single
polynomial equation in these variables, establishing that Avt(x) is algebraic.

Let us work out an example. We use the graphical representation of tree patterns
with the understanding that the leaves are blanks. Consider the tree pattern

t = = (L(L((LL)L)))

from class 5.2. The first equation is

weight() = x+ weight().

We have tl = and tr = , so Equation (1) gives

weight() = x ·
(
weight() · weight()− weight(∩) · weight(∩)

)
= x ·

(
weight()2 − weight() · weight()

)
since L ∩ p = p for any tree pattern p. The variable weight() = weight(tr) is
new, so we put it into Equation (1):

weight() = x ·
(
weight() · weight()− weight(∩) · weight(∩)

)
= x ·

(
weight() · weight()− weight() · weight()

)
.

There are two new variables:

weight() = x ·
(
weight() · weight()− weight(∩) · weight(∩)

)
= x ·

(
weight() · weight()− weight() · weight()

)
;

weight() = x ·
(
weight() · weight()− weight(∩) · weight(∩)

)
= x ·

(
weight() · weight()− weight() · weight()

)
.

We have no new variables, so we eliminate the four auxiliary variables

weight(),weight(),weight(),weight()

from this system of five equations to obtain

x3 weight()2 − (x2 − 1)2 weight()− x (x2 − 1) = 0.

14 Eric Rowland

4.2. Enumerating with respect to a single tree. To prove Theorem 1, we
make a few modifications in order to compute EnL,t(x, y) instead of Avt(x). Again

weight(p) :=
∑
T∈Lp

weight(T),

but now weight(T) = xnumber of vertices in T ynumber of copies of t in T for all T . We
modify Equation (1) to become

(2) weight((plpr)) =

x ·
(
weight(pl) · weight(pr) + (y − 1) · weight(pl ∩ tl) · weight(pr ∩ tr)

)
since in addition to accounting for the trees that avoid t we also account for those
that match t, in which case y is contributed.

The rest of the algorithm carries over unchanged, and we obtain a polynomial
equation in x, y, and EnL,t(x, y) = weight(L).

4.3. Enumerating with respect to multiple trees. A more general question
is the following. Given several binary tree patterns p1, . . . , pk, what is the number
an0,n1,...,nk

of binary trees containing precisely n0 vertices, n1 copies of p1, . . . , nk
copies of pk? We consider the enumerating generating function

EnL,p1,...,pk
(xL, xp1 , . . . , xpk

) =
∑
T∈L

xα0
L xα1

p1 · · ·x
αk
pk

=
∞∑

n0=0

∞∑
n1=0

· · ·
∞∑

nk=0

an0,n1,...,nk
xn0
L x

n1
p1 · · ·x

nk
pk
,

where p0 = L and αi is the number of copies of pi in T . (We need not assume
that the pi are distinct.) This generating function can be used to obtain infor-
mation about how correlated a family of tree patterns is. We have the following
generalization of Theorem 1.

Theorem 3. EnL,p1,...,pk
(xL, xp1 , . . . , xpk

) is algebraic.

Keeping track of multiple tree patterns p1, . . . , pk is not much more complicated
than handling a single pattern, and the algorithm for doing so has the same outline.
Let

weight(p) :=
∑
T∈Lp

weight(T)

with
weight(T) = xα0

L xα1
p1 · · ·x

αk
pk
,

where again αi is the number of copies of pi in T . Let d = max1≤i≤k depth(pi).
First we describe what to do with each new variable weight(q) that arises. The
approach used is different than that for one tree pattern; in particular, we do not
make use of intersections. Consequently, it is less efficient.

Let l be the number of leaves in q. If T is a tree matching q, then for each leaf
L of q there are two possibilities: Either L is matched by a terminal vertex () in
T , or L is matched by a tree matching (LL). For each leaf we make this choice
independently, thus partitioning the language Lq into 2l disjoint sets represented
by 2l tree patterns that are disjoint in the sense that each tree matching q matches

Pattern avoidance in binary trees 15

precisely one of these patterns. For example, partitioning the pattern (LL) into 22

patterns gives

weight((LL)) = weight((()())) +

weight((()(LL))) + weight(((LL)())) + weight(((LL)(LL))).

We need an analogue of Equation (2) for splitting a pattern (plpr) into the two
subpatterns pl and pr. For this, examine each of the 2l patterns that arose in
partitioning q. For each pattern p = (plpr) whose language is infinite (that is, the
word p contains the symbol L) and has depth(p) ≥ d, rewrite

weight(p) = weight(pl) · weight(pr) ·
∏

0≤i≤k
p matches pi

xpi
,

where ‘p matches pi’ means that every tree in Lp matches pi (so Lp ⊂ Lpi
). If Lp

is infinite but depth(p) < d, keep weight(p) intact as a variable.
Finally, for all tree patterns p whose language is finite (i.e., p is a tree), rewrite

weight(p) =
∏

0≤i≤k

xnumber of copies of pi in p
pi

.

The algorithm is as follows. As before, begin with the equation

weight(L) = weight(()) + weight((LL)).

At each step, take each new variable weight(q) and obtain another equation by
performing the procedure described: Write it as the sum of 2l other variables,
split the designated patterns into subpatterns, and explicitly compute the weights
of any trees appearing. Continue in this manner until there are no new variables
produced; this must happen because we break up weight(p) whenever depth(p) ≥ d,
so there are only finitely many possible variables. Eliminate from this system of
polynomial equations all but the k+2 variables weight(()) = xL, xp1 , . . . , xpk

, and
weight(L) = EnL,p1,...,pk

(xL, xp1 , . . . , xpk
) to obtain a polynomial equation satisfied

by EnL,p1,...,pk
(xL, xp1 , . . . , xpk

).

5. Replacement bijections

In this section we address the question of providing systematic bijective proofs of
avoiding-equivalence. Given two equivalent binary tree patterns s and t, we would
like to produce an explicit bijection between binary trees avoiding s and binary trees
avoiding t. It turns out that this can often be achieved by structural replacements
on trees. We start by describing an example in full, and later generalize.

5.1. An example replacement bijection. Consider the trees

t2 = and t3 =

in class 4.2. The idea is that since n-leaf trees avoiding t2 are in bijection to n-leaf
trees avoiding t3, then somehow swapping all occurrences of these two tree patterns
should produce a bijection. However, since the patterns may overlap, it is necessary
to specify an order in which to perform the replacements. A natural order is to
start with the root and work down the tree. More precisely, a top-down replacement
is a restructuring of a tree T in which we iteratively apply a set of transformation
rules to subtrees of T , working downward from the root.

16 Eric Rowland

Take the replacement rule to be

a b c d
→ c

a b
d
,

where the variables represent trees attached at the leaves, rearranged according to
the permutation 3124. Begin at the root: If T itself matches the left side of the
rule, then we restructure T according to the rule; if not, we leave T unchanged.
Then we repeat the procedure on the root’s (new) children, then on their children,
and so on, so that each vertex in the tree is taken to be the root of a subtree which
is possibly transformed by the rule. For example,

→ → →

shows the three replacements required to compute the image (on the right) of a
tree avoiding t2. The resulting tree avoids t3.

This top-down replacement is invertible. The inverse map is a bottom-up replace-
ment with the inverse replacement rule,

a

b c
d
→

b c a d
.

Rather than starting at the root and working down the tree, we apply this map by
starting at the leaves and working up the tree.

We now show that the top-down replacement is in fact a bijection from trees
avoiding t2 to trees avoiding t3. It turns out to be the same bijection given in
Section 3.4 via words in {0, 1}n−2.

Assume T avoids t2; we show that the image of T under the top-down replace-
ment avoids t3. It is helpful to think of T as broken up into (possibly overlapping)
“spheres of influence” — subtrees which are maximal with respect to the replace-
ment rule in the sense that performing the top-down replacement on the subtree
does not introduce instances of the relevant tree patterns containing vertices out-
side of the subtree. It suffices to consider each sphere of influence separately. A
natural focal point for each sphere of influence is the highest occurrence of t3. We
verify that restructuring this t3 to t2 under the top-down replacement produces no
t3 above, at, or below the root of the new t2 in the image of T .
above: Since t3 has depth 2, t3 can occur at most one level above the root of the

new t2 while overlapping it. Thus it suffices to consider all subtrees with
t3 occurring at level 1. There are two cases,

e

a b c d

and
a b c d

e .

The first case does not avoid t2, so it does not occur in T . The second case
may occur in T . However, we do not want the subtree itself to match t3
(because we assume that the t3 at level 1 is the highest t3 in this sphere of

Pattern avoidance in binary trees 17

influence), so we must have e = (). Thus this subtree is transformed by
the top-down replacement as

a b c d

→ c

a b
d
.

The image does not match t3 at the root, so t3 does not appear above the
root of the new t2.

at: Since T avoids t2, every subtree in T matching t3 in fact matches the pattern
((LL)(()L)). Such a subtree is restructured as

a b d
→

a b
d

under the replacement rule, and the image does not match t3 (because
c = () is terminal). Therefore the new t2 cannot itself match t3.

below: A general subtree matching t3 and avoiding t2 is transformed as

a b → a b →
a b

→ · · · →

a b

→ · · · .

Clearly t3 can only occur in the image at or below the subtree (ab). How-
ever, since (ab) is preserved by the replacement rule, any transformations
on (ab) can be considered independently. That is, (ab) is the top of a
different sphere of influence, so we need not consider it here. We conclude
that t3 does not occur below the root of the new t2.

If we already knew that t2 and t3 are equivalent (for example, by having com-
puted Avt(x) as in Section 4.1), then we have now obtained a bijective proof of their
equivalence. Otherwise, it remains to show that if T avoids t3, then performing the
bottom-up replacement produces a tree that avoids t2; this can be accomplished
similarly.

5.2. General replacement bijections. A natural question is whether for any
two equivalent binary tree patterns s and t there exists a sequence of replacement
bijections and left–right reflections that establishes their equivalence. For tree pat-
terns of at most 7 leaves the answer is “Yes”, which perhaps suggests that these
maps suffice in general.

Conjecture 4. If s and t are equivalent, then there is a sequence of top-down
replacements, bottom-up replacements, and left–right reflections that produces a bi-
jection from binary trees avoiding s to binary trees avoiding t.

In this section we discuss qualitative results regarding this conjecture.
Given two m-leaf tree patterns s and t, one can ask which permutations of

the leaves give rise to a top-down replacement that induces a bijection from trees

18 Eric Rowland

avoiding s to trees avoiding t. Most permutations are not viable. Candidate permu-
tations can be found experimentally by simply testing all m! permutations of leaves
on a set of randomly chosen binary trees avoiding s; one checks that the image
avoids t and that composing the top-down replacement with the inverse bottom-up
replacement produces the original tree. This approach is feasible for small m, but
it is slow and does not provide any insight into why certain trees are equivalent. A
question unresolved at present is to efficiently find all such bijections. The naive
method was used to find the examples in this section.

Once a candidate bijection is found, it can be proved in a manner similar to
Section 5.1. Although we do not attempt here to fully generalize that argument,
the following two examples provide an indication of the issues encountered in the
‘above’ and ‘below’ cases of the general setting.

As an example of what can go wrong in the ‘above’ case, consider the rule

a

b c
d
→

b c a d

given by the permutation 2314 on 4-leaf binary trees s = t3 and t = t2. This rule
does not induce a top-down replacement bijection from trees avoiding t3 to trees
avoiding t2. One obstruction is the mapping

→ .

The initial tree avoids t3. However, it contains t2, and replacing this t2 with t3
completes another t2. The final tree does not avoid t2.

In general, for the ‘above’ case it suffices to check all trees avoiding s of a certain
depth where the highest t begins at level depth(t) − 1. A bound on the depth is
possible since for a given set of replacement rules there is a maximum depth at
which the structure of a subtree can affect the top depth(t) + 1 levels of the image.
If, after performing the top-down replacement on these trees, no t appears above
level depth(t) − 1, then t can never appear above the root of the highest t in the
subtree.

An example of what can go wrong in the ‘below’ case is provided by the rule

a

b c
d
→ a

d
b c

given by the permutation 1423 on 4-leaf binary trees s = t1 and t = t2. This rule
does not induce a top-down replacement bijection from trees avoiding t1 to trees
avoiding t2. (Indeed, these patterns are not equivalent.) One obstruction is the
mapping

→ → .

The initial tree avoids t1. However, it matches t2, and replacing this t2 with t1
produces a copy of the intersection t1 ∩ t2 in the intermediate step. The t2 is then
replaced by t1, but this does not change the tree because t1∩ t2 is fixed by the rule.
Therefore the final tree does not avoid t2.

Pattern avoidance in binary trees 19

A general proof for the ‘below’ case must take into account all ways of producing,
below the root of the highest t in a subtree, a copy t of that is not broken by further
replacements.

We now return briefly to the replacement rule of Section 5.1 to mention that a
minor modification produces a bijection on the full set of binary trees. Namely,
take the two replacement rules

a b c d
→ c

a b
d

and a

b c
d
→

b c a d
.

Again we perform a top-down replacement, now using both rules together. That is,
if a subtree matches the left side of either rule, we restructure it according to that
rule. Of course, it can happen that a particular subtree matches both replacement
rules, resulting in potential ambiguity; in this case which do we apply? Well, if
both rules result in the same transformation, then it does not matter, and indeed
with our present example this is the case. To show this, it suffices to take the
intersection t2 ∩ t3 of the two left sides and label the leaves to represent additional
branches that may be present:

p1 p2

p3 p4

p5
.

Now we check that applying each of the two replacement rules to this tree produces
the same labeled tree, namely

p3 p4

p1 p2

p5
.

Therefore we need not concern ourselves with which rule is applied to a given
subtree that matches both. Since the replacement rules agree on their intersection,
the top-down replacement is again invertible and is therefore a bijection from the
set of binary trees to itself. By the examination of cases in Section 5.1, this bijection
is an extension of the bijection between binary trees avoiding t2 and binary trees
avoiding t3.

Thus we may choose from two types of bijection when searching for top-down
replacement bijections that prove avoiding-equivalence. The first type is from bi-
nary trees avoiding s to binary trees avoiding t, using one rule for the top-down
direction and the inverse for the bottom-up direction; these bijections in general
do not extend to bijections on the full set of binary trees. The second type is a
bijection on the full set of binary trees, using both rules in each direction, that
induces a bijection from binary trees avoiding s to binary trees avoiding t.

Empirically, each two-rule bijection that proves avoiding-equivalence for s and t
induces a one-rule bijection proving this equivalence, as in the previous example.
However, not all two-rule bijections, when restricted to one rule, become bijections
that prove avoiding-equivalence; the rules used to discuss the ‘above’ and ‘below’
cases in this section are two counterexamples.

One benefit to searching for two-rule bijections is that requiring the two replace-
ment rules to agree on the leaf-labeled intersection s ∩ t quickly prunes the set of
candidate permutations. There is a tradeoff, however, because verifying a two-rule
bijection is more complicated than verifying a one-rule bijection.

20 Eric Rowland

t2 t3 t4 t6 t7 t8 t9 t11 t12 t13
t2 — 14235 43125
t3 — 12534 31245 51234
t4 12453 — 41235
t6 — 12534 45123
t7 12453 — 45123
t8 34512 — 31245
t9 34512 23145 —
t11 13452 — 31245
t12 23451 12453 23145 —
t13 14532 13425 —

Table 1. Leaf permutations whose two-rule replacements prove
avoiding-equivalence for pairs of trees in class 5.2.

Searching for two-rule bijections on 4-leaf binary tree patterns, one finds only
the rules given by the permutation 3124 for s = t2 and t = t3, mentioned above,
and their left–right reflections, given by 1342 for s = t4 and t = t3. (Note the
asymmetry here: There is a top-down replacement bijection from trees avoiding t2
to trees avoiding t3 but not vice versa.)

However, this does not account for all top-down replacement bijections for these
patterns. The permutation 3142 for s = t2 and t = t3 and its left–right reflection
3142 for s = t4 and t = t3 provide one-rule bijections that do not extend to all
binary trees.

Among equivalence classes of 5-leaf binary tree patterns, class 5.2 is the only
class containing nontrivial equivalences. It consists of the ten trees t2, t3, t4, t6, t7,
t8, t9, t11, t12, and t13, pictured as follows.

For each pair of trees in this class, Table 1 lists the leaf permutations that prove
equivalence by a two-rule top-down replacement. It happens that there is at most
one permutation for each pair in this class, although in general there may be more.

With this data, one might suspect that two-rule replacement bijections are suf-
ficient to establish every equivalence class of binary tree patterns. In fact they are
not. The smallest counterexample is class 7.15, which consists of the three trees

t61 = , t65 = , and t81 =

and their left–right reflections. Trees t81 and t61 are equivalent by the permutation
1456723, but no permutation of leaves produces a two-rule replacement bijection
that establishes the equivalence of t65 to one of the others. However, the permu-
tations 4561237 and 4571236 provide candidate one-rule bijections for t65 and t61,
and 2341675 provides a candidate bijection for t65 and t81.

We conclude with a curious example in which two tree patterns can only be
proven equivalent by a two-rule bijection that does not involve them directly. The

Pattern avoidance in binary trees 21

trees

t7 = and t11 =

in class 6.5 are avoiding-equivalent by the permutation 126345, but neither

t17 =

nor its left–right reflection has an equivalence-proving permutation to t7, t11, or
their left–right reflections. Thus, this equivalence cannot be established by a bijec-
tion that swaps 6-leaf tree patterns. However, it can be established by a bijection
that swaps 4-leaf tree patterns: The previously mentioned bijection consisting of
the two replacement rules

a b c d
→ c

a b
d

and a

b c
d
→

b c a d
,

induces a top-down replacement bijection from trees avoiding t7 to trees avoiding
t17. The reason is that t7 and t17 are formed by two overlapping copies of the
class 4.2 trees

and

respectively, and that t7 and t17 are mapped to each other under this bijection.

Acknowledgements

I thank Phillipe Flajolet for helping me understand some existing literature,
and I thank Lou Shapiro for suggestions which clarified some points in the paper.
Thanks to the referee for the reference to Stanley’s book.

I am indebted to Elizabeth Kupin for much valuable feedback. Her comments
greatly improved the exposition and readability of the paper. In addition, the idea
of looking for one-rule bijections that do not extend to bijections on the full set of
binary trees is hers, and this turned out to be an important generalization of the
two-rule bijections I had been considering.

Appendix. Table of equivalence classes

This appendix lists equivalence classes of binary trees with at most 6 leaves.
Left–right reflections are omitted for compactness. For each class we provide a
polynomial equation satisfied by f = EnL,t(x, y); an equation satisfied by Avt(x)
is obtained in each case by letting y = 0.

The data was computed by the Mathematica package TreePatterns [11] using
Singular via the interface package by Manuel Kauers and Viktor Levandovskyy
[8]. Pre-computed data extended to 8-leaf binary trees is now also available in
TreePatterns. The number of equivalence classes of m-leaf binary trees for
m = 1, 2, 3, . . . is 1, 1, 1, 2, 3, 7, 15, 44,

Class 1.1 (1 tree).

xyf2 − f + xy = 0

22 Eric Rowland

Class 2.1 (1 tree).

xyf2 − f + x = 0

Class 3.1 (2 trees).

xyf2 +
(
−x2(y − 1)− 1

)
f + x = 0

Class 4.1 (2 trees).

(
xy − x3(y − 1)

)
f2 +

(
−x2(y − 1)− 1

)
f + x = 0

Class 4.2 (3 trees).

xyf2 +
(
−2x2(y − 1)− 1

)
f +

(
x3(y − 1) + x

)
= 0

Class 5.1 (2 trees).

−x4(y − 1)f3 +
(
xy − x3(y − 1)

)
f2 +

(
−x2(y − 1)− 1

)
f + x = 0

Class 5.2 (10 trees).

(
xy − x3(y − 1)

)
f2 +

(
x2
(
x2 − 2

)
(y − 1)− 1

)
f +

(
x3(y − 1) + x

)
= 0

Class 5.3 (2 trees).

xyf3 +
(
−3x2(y − 1)− 1

)
f2 +

(
3x3(y − 1) + x

)
f − x4(y − 1) = 0

Class 6.1 (2 trees).

−x5(y − 1)f4 − x4(y − 1)f3 +
(
xy − x3(y − 1)

)
f2 +

(
−x2(y − 1)− 1

)
f + x = 0

Class 6.2 (8 trees).

− x4(y − 1)f3 + x
(
x2
(
x2 − 1

)
(y − 1) + y

)
f2 +(
x2
(
x2 − 2

)
(y − 1)− 1

)
f +

(
x3(y − 1) + x

)
= 0

Pattern avoidance in binary trees 23

Class 6.3 (14 trees).

x
(
x2
(
x2 − 2

)
(y − 1) + y

)
f2 +

(
2x2

(
x2 − 1

)
(y − 1)− 1

)
f +

(
x3(y − 1) + x

)
= 0

Class 6.4 (8 trees).

(
xy − x3(y − 1)

)
f3 +

(
x2
(
2x2 − 3

)
(y − 1)− 1

)
f2 +(

−x5(y − 1) + 3x3(y − 1) + x
)
f − x4(y − 1) = 0

Class 6.5 (6 trees).

(
xy − 2x3(y − 1)

)
f2 +

(
x2
(
3x2 − 2

)
(y − 1)− 1

)
f +

(
−x5(y − 1) + x3(y − 1) + x

)
= 0

Class 6.6 (2 trees).

−xyf4 +
(
4x2(y − 1) + 1

)
f3 +

(
−6x3(y − 1)− x

)
f2 + 4x4(y − 1)f − x5(y − 1) = 0

Class 6.7 (2 trees).

x4
(
x2(y − 1)− y

)
(y − 1)f3 +

(
−2x7(y − 1)2 + x5(y − 1)(3y − 2)− x3(y − 1) + xy

)
f2 +(

x2
(
x6(y − 1)− 3x4(y − 1) + x2 − 2

)
(y − 1)− 1

)
f +

(
x7(y − 1)2 + x3(y − 1) + x

)
= 0

References

[1] Nicolaas de Bruijn and B. J. M. Morselt, A note on plane trees, Journal of Combinatorial
Theory 2 (1967) 27–34.

[2] Emeric Deutsch, Dyck path enumeration, Discrete Mathematics 204 (1999) 167–202.

[3] Robert Donaghey and Louis Shapiro, Motzkin numbers, Journal of Combinatorial Theory,
Series A 23 (1977) 291–301.

[4] Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge University
Press, 2009.

[5] Philippe Flajolet, Paolo Sipala, and Jean-Marc Steyaert, Analytic variations on the common
subexpression problem, Lecture Notes in Computer Science: Automata, Languages, and

Programming 443 (1990) 220–234.
[6] Ian Goulden and David Jackson, An inversion theorem for cluster decompositions of sequences

with distinguished subsequences, Journal of the London Mathematical Society (second series)
20 (1979) 567–576.

[7] Frank Harary, Geert Prins, and William Tutte, The number of plane trees, Indagationes
Mathematicae 26 (1964) 319–329.

http://algo.inria.fr/flajolet/Publications/books.html

24 Eric Rowland

[8] Manuel Kauers and Viktor Levandovskyy, Singular [a Mathematica package], available from

http://www.risc.uni-linz.ac.at/research/combinat/software/Singular/index.html.

[9] Donald Knuth, The Art of Computer Programming, second edition, Volume 1: Fundamental
Algorithms, Addison–Wesley, 1973.

[10] John Noonan and Doron Zeilberger, The Goulden–Jackson cluster method: extensions, ap-

plications, and implementations, Journal of Difference Equations and Applications 5 (1999)
355–377.

[11] Eric Rowland, TreePatterns [a Mathematica package], available from the author’s web site.

[12] Aris Sapounakis, Ioannis Tasoulas, and Panos Tsikouras, Counting strings in Dyck paths,
Discrete Mathematics 307 (2007) 2909–2924.

[13] Neil Sloane, The Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/

sequences.
[14] Richard Stanley, Enumerative Combinatorics volume 2, Cambridge University Press, New

York, 1999.
[15] Jean-Marc Steyaert and Philippe Flajolet, Patterns and pattern-matching in trees: an anal-

ysis, Information and Control 58 (1983) 19–58.

Mathematics Department, Tulane University, New Orleans, LA 70118, USA

http://www.risc.uni-linz.ac.at/research/combinat/software/Singular/index.html
http://www.research.att.com/~njas/sequences
http://www.research.att.com/~njas/sequences

	1. Introduction
	2. Definitions
	2.1. The Harary--Prins--Tutte bijection
	2.2. Avoidance
	2.3. Generating functions

	3. Initial inventory and some special bijections
	3.1. 1-leaf trees
	3.2. 2-leaf trees
	3.3. 3-leaf trees
	3.4. 4-leaf trees
	3.5. Bijections to Dyck words

	4. Algorithms
	4.1. Avoiding a single tree
	4.2. Enumerating with respect to a single tree
	4.3. Enumerating with respect to multiple trees

	5. Replacement bijections
	5.1. An example replacement bijection
	5.2. General replacement bijections

	Acknowledgements
	Appendix. Table of equivalence classes
	References

