LUCAS' THEOREM MODULO p^{2}

ERIC ROWLAND

Abstract

Lucas' theorem describes how to reduce a binomial coefficient ($\left.\begin{array}{l}a \\ b\end{array}\right)$ modulo p by breaking off the least significant digits of a and b in base p. We characterize the pairs of these digits for which Lucas' theorem holds modulo p^{2}. This characterization is naturally expressed using symmetries of Pascal's triangle.

1. Introduction

In 1878, Lucas [11] discovered a formula for computing the residue of a binomial coefficient modulo p, where p is a prime. Namely, if $r, s \in\{0,1, \ldots, p-1\}$ and a and b are nonnegative integers, then

$$
\begin{equation*}
\binom{p a+r}{p b+s} \equiv\binom{a}{b}\binom{r}{s} \quad \bmod p . \tag{1}
\end{equation*}
$$

This congruence can also be written using base- p representations. Let the base- p representations of a and b be $a_{\ell} \cdots a_{1} a_{0}$ and $b_{\ell} \cdots b_{1} b_{0}$, where we have made them the same length by padding the shorter representation with 0 s if necessary. Iterating Congruence (1) gives

$$
\binom{a}{b} \equiv\binom{a_{\ell}}{b_{\ell}} \cdots\binom{a_{1}}{b_{1}}\binom{a_{0}}{b_{0}} \quad \bmod p
$$

Several variants and generalizations of Lucas' theorem are known. Meštrović [13] gives an excellent survey. In particular, it is natural to ask for Lucas-type congruences modulo higher powers of p. We refer to a congruence of the form

$$
\begin{equation*}
\binom{p a+r}{p b+s} \equiv\binom{a}{b}\binom{r}{s} \quad \bmod p^{\alpha} \tag{2}
\end{equation*}
$$

where $r, s \in\{0,1, \ldots, p-1\}$ as a Lucas congruence. This congruence does not hold in general, but it does hold for certain values of α, p, r, s, a, b. Even prior to Lucas' work, Babbage [1] in 1819 showed that

$$
\begin{equation*}
\binom{2 p-1}{p-1} \equiv 1 \quad \bmod p^{2} \tag{3}
\end{equation*}
$$

for all $p \geq 3$; this is a Lucas congruence where $r=s=p-1, a=1$, and $b=0$. In 1862, Wolstenholme [18] showed that Babbage's congruence holds modulo p^{3} if $p \geq 5$. This was generalized by Glaisher [8, page 21] in 1900 to the Lucas congruence

$$
\begin{equation*}
\binom{p a-1}{p-1} \equiv 1 \quad \bmod p^{3} \tag{4}
\end{equation*}
$$

[^0]for all $a \geq 1$, again for $p \geq 5$. Since $a\binom{p a-1}{p-1}=\binom{p a}{p}$, this implies $\binom{p a}{p} \equiv a \bmod p^{3}$, which itself can be generalized to the Lucas congruence
\[

$$
\begin{equation*}
\binom{p a}{p b} \equiv\binom{a}{b} \quad \bmod p^{3} \tag{5}
\end{equation*}
$$

\]

for $a \geq 0, b \geq 0$, and $p \geq 5$. Congruence (5) is often attributed to Ljunggren 3. However, Ljunggren only considered the special case $a=p b$ and was primarily interested in the case $a=p^{n}, b=p^{n-1}$. The general form seems to have been first obtained by Jacobsthal in the same paper [3. It was independently rediscovered several times, including by Kazandzidis [10] and Bailey [2]. Siong [17] also gave a proof that Congruence (5) follows from Glaisher's congruence. For $p=2$ and $p=3$, Congruence (5) does not hold modulo p^{3} in general but does hold modulo p^{2}.

While each of the congruences (3)-(5) uses a single pair (r, s) of digits, some results of Bailey [2] allow these digits to be general. For every prime p, Bailey proved that

$$
\binom{p^{2} a+r}{p^{2} b+s} \equiv\binom{a}{b}\binom{r}{s} \quad \bmod p^{2}
$$

for all $r, s \in\{0,1, \ldots, p-1\}, a \geq 0$, and $b \geq 0$. The equivalent form $\binom{p(p a)+r}{p(p b)+s} \equiv$ $\binom{p a}{p b}\binom{r}{s} \bmod p^{2}$ is a Lucas congruence. For $p \geq 5$, Bailey also proved

$$
\binom{p^{3} a+r}{p^{3} b+s} \equiv\binom{a}{b}\binom{r}{s} \quad \bmod p^{3}
$$

These exponents 3 were subsequently increased by Davis and Webb [5]. A further extension was found by Zhao [20], and generalizations of Lucas' theorem modulo p^{α} for general $\alpha \geq 1$ were given by Davis and Webb [4, Granville [9, and Yassawi and the author [15, Theorem 5.3], although these results depart from the form of Congruence (2).

In this article we consider the following question. For which pairs (r, s) of base- p digits does the Lucas congruence

$$
\binom{p a+r}{p b+s} \equiv\binom{a}{b}\binom{r}{s} \quad \bmod p^{2}
$$

hold for all $a \geq 0$ and $b \geq 0$? The set of such pairs is our primary object of interest.
Notation. For each prime p, let

$$
\begin{aligned}
& D(p)=\left\{(r, s) \in\{0,1, \ldots, p-1\}^{2}:\right. \\
& \left.\qquad\binom{p a+r}{p b+s} \equiv\binom{a}{b}\binom{r}{s} \bmod p^{2} \text { for all } a \geq 0, b \geq 0\right\} .
\end{aligned}
$$

2. Description of the set $D(p)$

Congruence (5) implies that $D(p)$ is nonempty for each prime $p \geq 5$, since $(0,0) \in D(p)$. Computer experiments suggest that $D(p)$ contains additional pairs as well. For example, we will show that $D(3)=\{(0,0),(2,0),(2,2)\}$ and $D(7)=$ $\{(0,0),(4,2),(6,0),(6,6)\}$. The following table highlights the binomial coefficients $\binom{r}{s}$ corresponding to points $(r, s) \in D(7)$.

1	0	0	0	0	0	0
1	1	0	0	0	0	0
1	2	1	0	0	0	0
1	3	3	1	0	0	0
1	4	6	4	1	0	0
1	5	10	10	5	1	0
1	6	15	20	15	6	1

Our first result is that the zeros in this table do not correspond to points in $D(p)$.

Proposition 1. Let p be a prime. If $s>r$, then $(r, s) \notin D(p)$.
Proof. Let $a=1$ and $b=0$. The binomial coefficient $\binom{p a+r}{p b+s}=\binom{p+r}{s}=\frac{(p+r)!}{s!(p+r-s)!}$ is divisible by p but not p^{2}. On the other hand, $\binom{a}{b}\binom{r}{s}=\binom{r}{s}=0$ is divisible by p^{2}. Therefore $\binom{p a+r}{p b+s} \not \equiv\binom{a}{b}\binom{r}{s} \bmod p^{2}$.

In light of Proposition 1, we omit points (r, s) where $s>r$ from the previous table. Then we shear the remaining triangle:

For $p=11$, the set $D(11)$ contains 9 pairs of digits, arranged as follows.

For $p=17, p=29$, and $p=37$ the pairs in $D(p)$ appear in the following locations.

These pictures suggest that $D(p)$ is invariant under the symmetries of the equilateral triangle!

Reflection symmetry about the vertical axis is not altogether surprising, since Pascal's triangle also exhibits this symmetry. We establish this in Proposition 5 However, the rotational symmetry of $D(p)$ is unexpected.

To identify the image of (r, s) under rotation, we use the fact that counterclockwise rotation by 120° is equivalent to the composition of two reflections:

The first reflection is through the vertical altitude of the triangle. This reflection maps the point (r, s) to $(r, r-s)$. The second reflection is through the altitude passing through the lower right vertex. This reflection maps (r, s) to $(p-1-r+s, s)$, as can be seen by shearing so that this altitude is horizontal. Composing these reflections shows that the rotation maps (r, s) to $(p-1-s, r-s)$. Therefore the three binomial coefficients visited by the orbit of (r, s) under rotation by 120° are

$$
\binom{r}{s},\binom{p-1-s}{r-s},\binom{p-1-r+s}{p-1-r}
$$

the third of which is equal to $\binom{p-1-r+s}{s}$.
In general, these three binomial coefficients are not equal, nor are they congruent modulo p. However, we will show in Corollary 7 that they do satisfy a congruence modulo p if we multiply them by the correct signs. Furthermore, the elements of $D(p)$ can be characterized as the pairs (r, s) for which this congruence holds not just modulo p but modulo p^{2}.

Theorem 2. Let p be a prime, and let $r, s \in\{0,1, \ldots, p-1\}$. The congruence

$$
\binom{p a+r}{p b+s} \equiv\binom{a}{b}\binom{r}{s} \quad \bmod p^{2}
$$

holds for all $a \geq 0$ and $b \geq 0$ if and only if $s \leq r$ and

$$
\begin{equation*}
\binom{r}{s} \equiv(-1)^{r-s}\binom{p-1-s}{r-s} \equiv(-1)^{s}\binom{p-1-r+s}{s} \quad \bmod p^{2} \tag{6}
\end{equation*}
$$

For certain classes of primes, $D(p)$ contains digit pairs that correspond to simple geometric points in the triangle. For example, if $p \equiv 1 \bmod 3$ then the center of the triangle has integer coordinates, namely $r=\frac{2}{3}(p-1)$ and $s=\frac{1}{3}(p-1)$.

Moreover, $p \equiv 1 \bmod 6$ in this case, so the coordinates r and s are even, and $1=(-1)^{r-s}=(-1)^{s}$. Since the center is invariant under rotation about itself, the point (r, s) satisfies Congruence (6). Consequently, $(r, s) \in D(p)$ and we obtain the following congruence.
Corollary 3. If $p \equiv 1 \bmod 3$, then

$$
\binom{p a+\frac{2}{3}(p-1)}{p b+\frac{1}{3}(p-1)} \equiv\binom{a}{b}\binom{\frac{2}{3}(p-1)}{\frac{1}{3}(p-1)} \quad \bmod p^{2}
$$

for all $a \geq 0$ and $b \geq 0$.
We can iterate Corollary 3 for the particular numbers $a=\frac{2}{3}(p-1) \sum_{i=0}^{\ell-1} p^{i}=$ $\frac{2}{3}\left(p^{\ell}-1\right)$ and $b=\frac{1}{3}\left(p^{\ell}-1\right)$ whose base- p representations consist of ℓ copies of the digits $\frac{2}{3}(p-1)$ and $\frac{1}{3}(p-1)$, respectively. Therefore, if $p \equiv 1 \bmod 3$ and $\ell \geq 0$, then

$$
\binom{\frac{2}{3}\left(p^{\ell}-1\right)}{\frac{1}{3}\left(p^{\ell}-1\right)} \equiv\binom{\frac{2}{3}(p-1)}{\frac{1}{3}(p-1)}^{\ell} \quad \bmod p^{2}
$$

The value of $\binom{2(p-1) / 3}{(p-1) / 3}$ modulo p was studied by Jacobi, and its value modulo p^{2}
 $4 p=A^{2}+27 B^{2}$ and the sign of A is chosen so that $A \equiv 1 \bmod 3$.

A prime p is a Wieferich prime if $2^{p-1} \equiv 1 \bmod p^{2}$. Only two such primes are known: 1093 and 3511. It will follow from the proof of Theorem 2 that p is a Wieferich prime if and only if $\left\{\left(\frac{p-1}{2}, 0\right),\left(\frac{p-1}{2}, \frac{p-1}{2}\right),\left(p-1, \frac{p-1}{2}\right)\right\} \subseteq D(p)$. These digits pairs correspond to the midpoints of the three edges of the triangle. Morley [14] proved that $\binom{p-1}{(p-1) / 2} \equiv(-1)^{(p-1) / 2} 4^{p-1} \bmod p^{3}$ for every prime $p \geq 5$. In particular, $\binom{p-1}{(p-1) / 2} \equiv(-1)^{(p-1) / 2} \bmod p^{2}$ for Wieferich primes.

An interesting question, which we do not address here, is this: What else can be said about the size of $D(p)$ as a function of p ? The following table lists the elements of $D(p)$ for the first ten primes.

p	$D(p)$
2	$\{(0,0)\}$
3	$\{(0,0),(2,0),(2,2)\}$
5	$\{(0,0),(4,0),(4,4)\}$
7	$\{(0,0),(4,2),(6,0),(6,6)\}$
11	$\{(0,0),(3,0),(3,3),(7,0),(7,7),(10,0),(10,3),(10,7),(10,10)\}$
13	$\{(0,0),(8,4),(12,0),(12,12)\}$
17	$\{(0,0),(9,2),(9,7),(14,7),(16,0),(16,16)\}$
19	$\{(0,0),(12,6),(18,0),(18,18)\}$
23	$\{(0,0),(22,0),(22,22)\}$
29	$\{(0,0),(13,0),(13,13),(15,0),(15,15),(28,0),(28,13),(28,15),(28,28)\}$

Theorem 2 was suggested by an analogous result for the Apéry numbers, which are defined by $A(n)=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}$. Gessel [7] showed that the Apéry numbers satisfy the one-dimensional Lucas congruence $A(p n+r) \equiv A(n) A(r) \bmod p$ for all $r \in\{0,1, \ldots, p-1\}$ and all $n \geq 0$. For certain values of r, this congruence also holds modulo p^{2}. Gessel noticed that $A(3 n+r) \equiv A(n) A(r) \bmod 9$ for all $r \in\{0,1,2\}$. By computing an automaton for the Apéry numbers modulo 25 , Yassawi and the author [15, Theorem 3.31] showed that $A(5 n+r) \equiv A(n) A(r)$
$\bmod 25$ if $r \in\{0,2,4\}$. This was recently generalized to all primes [16. Namely, the digits $r \in\{0,1, \ldots, p-1\}$ for which all $n \geq 0$ satisfy

$$
A(p n+r) \equiv A(n) A(r) \quad \bmod p^{2}
$$

are precisely the digits for which $A(r) \equiv A(p-1-r) \bmod p^{2}$. The reflection symmetry $A(r) \equiv A(p-1-r) \bmod p$ was established by Malik and Straub 12, Lemma 6.2] for all $r \in\{0,1, \ldots, p-1\}$. Therefore, the elements of both $D(p)$ and the analogous set for the Apéry numbers can be characterized as those for which a certain symmetry modulo p in fact holds modulo p^{2}.

In light of Theorem 2 , it is natural to ask about digit pairs (r, s) for which the Lucas congruence holds modulo p^{3} for all $a \geq 0$ and $b \geq 0$. Experiments suggest that for each prime $p \geq 5$ there are exactly three: $(0,0),(p-1,0)$, and $(p-1, p-1)$. However, it is conceivable that certain primes support more. We leave this as an open question.

3. A general congruence

To prove Theorem 2 , we first prove a general congruence for $\binom{p a+r}{p b+s}$ modulo p^{2}. Let $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ be the nth harmonic number. (In particular, the 0 th harmonic number is the empty sum $H_{0}=0$.) For $r \in\{0,1, \ldots, p-1\}$, the denominator of H_{r} is not divisible by p, so we can interpret H_{n} modulo p and modulo p^{2}.

Theorem 4. Let p be a prime. If $0 \leq s \leq r \leq p-1, a \geq 0$, and $b \geq 0$, then

$$
\binom{p a+r}{p b+s} \equiv\binom{a}{b}\binom{r}{s}\left(1+p a\left(H_{r}-H_{r-s}\right)+p b\left(H_{r-s}-H_{s}\right)\right) \quad \bmod p^{2}
$$

Proof. If $b>a$, then $\binom{p a+r}{p b+s}=0=\binom{a}{b}$, so the congruence holds. Assume $b \leq a$. By breaking a factorial into two products, we obtain

$$
\begin{aligned}
\binom{p a+r}{p b+s} & =\frac{(p a+r)!}{(p b+s)!(p a-p b+r-s)!} \\
& =\frac{(p a)!}{(p b)!(p a-p b)!} \frac{\prod_{i=1}^{r}(p a+i)}{\prod_{i=1}^{s}(p b+i) \prod_{i=1}^{r-s}(p a-p b+i)}
\end{aligned}
$$

The first factor is $\binom{p a}{p b} \equiv\binom{a}{b} \bmod p^{2}$; this is a special case of Congruence (5). In the second factor, we expand each product and collect terms by like powers of p. Namely, $\prod_{i=1}^{r}(p a+i) \equiv r!+p a \sum_{i=1}^{r} \frac{r!}{i} \bmod p^{2}$. This gives

$$
\begin{aligned}
\binom{p a+r}{p b+s} & \equiv\binom{a}{b} \frac{r!}{s!(r-s)!} \frac{1+p a H_{r}}{\left(1+p b H_{s}\right)\left(1+p(a-b) H_{r-s}\right)} \bmod p^{2} \\
& \equiv\binom{a}{b}\binom{r}{s}\left(1+p a H_{r}\right)\left(1-p b H_{s}\right)\left(1-p(a-b) H_{r-s}\right) \quad \bmod p^{2} \\
& \equiv\binom{a}{b}\binom{r}{s}\left(1+p a\left(H_{r}-H_{r-s}\right)+p b\left(H_{r-s}-H_{s}\right)\right) \quad \bmod p^{2}
\end{aligned}
$$

as desired.

4. Symmetries of $D(p)$

In this section, we establish that $D(p)$ possesses the symmetries of the equilateral triangle. In particular, we prove Theorem 2. The reflection symmetry $\binom{a}{b}=\binom{a}{a-b}$ of Pascal's triangle is familiar. Next we show that $D(p)$ also exhibits this symmetry.

Proposition 5. Let p be a prime. If $(r, s) \in D(p)$, then $(r, r-s) \in D(p)$.
Proof. Let $(r, s) \in D(p)$. By Proposition 1, $s \leq r$. By assumption, $\binom{p a+r}{p b+s} \equiv\binom{a}{b}\binom{r}{s}$ $\bmod p^{2}$ for all $a \geq 0$ and $b \geq 0$. Fix a and b. We would like to show $\binom{p a+r}{p b+r-s} \equiv$ $\binom{a}{b}\binom{r}{r-s} \bmod p^{2}$. There are two cases. If $b>a$, then $s<p \leq p(b-a)$. It follows that $p a+r<p b+r-s$. Therefore $\binom{p a+r}{p b+r-s}=0=\binom{a}{b}\binom{r}{r-s}$, so the congruence holds. On the other hand, if $b \leq a$, the reflection symmetry of Pascal's triangle gives

$$
\binom{p a+r}{p b+r-s}=\binom{p a+r}{(p a+r)-(p b+r-s)}=\binom{p a+r}{p(a-b)+s} .
$$

Since $(r, s) \in D(p)$, this implies

$$
\begin{aligned}
\binom{p a+r}{p b+r-s} & \equiv\binom{a}{a-b}\binom{r}{s} \quad \bmod p^{2} \\
& =\binom{a}{b}\binom{r}{r-s} \\
& \equiv\binom{p a}{p b}\binom{r}{r-s} \quad \bmod p^{2},
\end{aligned}
$$

as desired. In both cases, $\binom{p a+r}{p b+r-s} \equiv\binom{a}{b}\binom{r}{r-s} \bmod p^{2}$, so $(r, r-s) \in D(p)$.
In addition to the reflection symmetry, the first p rows of Pascal's triangle also exhibit rotational symmetry modulo p up to sign. To see this, first we prove the following congruence modulo p^{2}.

Proposition 6. Let p be a prime. If $0 \leq s \leq r \leq p-1$, then

$$
\begin{equation*}
\binom{r}{s} \equiv(-1)^{r-s}\binom{p-1-s}{r-s}\left(1+p H_{r}-p H_{s}\right) \quad \bmod p^{2} . \tag{7}
\end{equation*}
$$

Proof. Similar to the proof of Theorem4, we expand the product $(p-1-r)$! and collect terms by like powers of p :

$$
\begin{aligned}
r!(p-1-r)! & =r!\prod_{i=r+1}^{p-1}(p-i) \\
& \equiv r!\left(\prod_{i=r+1}^{p-1}(-i)+p(-1)^{p-1-r} \frac{(p-1)!}{r!} \sum_{i=r+1}^{p-1} \frac{1}{-i}\right) \bmod p^{2} \\
& =(-1)^{p-1-r}(p-1)!\left(1-p\left(H_{p-1}-H_{r}\right)\right) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\frac{r!(p-1-r)!}{s!(p-1-s)!} & \equiv(-1)^{r-s} \frac{1-p\left(H_{p-1}-H_{r}\right)}{1-p\left(H_{p-1}-H_{s}\right)} \quad \bmod p^{2} \\
& \equiv(-1)^{r-s}\left(1-p\left(H_{p-1}-H_{r}\right)\right)\left(1+p\left(H_{p-1}-H_{s}\right)\right) \quad \bmod p^{2} \\
& \equiv(-1)^{r-s}\left(1+p H_{r}-p H_{s}\right) \quad \bmod p^{2} .
\end{aligned}
$$

This is equivalent to

$$
\frac{r!}{s!} \equiv(-1)^{r-s} \frac{(p-1-s)!}{(p-1-r)!}\left(1+p H_{r}-p H_{s}\right) \quad \bmod p^{2}
$$

Dividing both sides by $(r-s)$! produces Congruence (7).
Modulo p, we obtain the following rotational symmetry.
Corollary 7. Let p be a prime. If $0 \leq s \leq r \leq p-1$, then

$$
\binom{r}{s} \equiv(-1)^{r-s}\binom{p-1-s}{r-s} \quad \bmod p .
$$

We now use Theorem 4 and Proposition 6 to prove Theorem 2, adding a third equivalent statement. We assume $s \leq r$, since otherwise $(r, s) \notin D(p)$ by Proposition 1.

Theorem 8. Let p be a prime, and let $0 \leq s \leq r \leq p-1$. The following are equivalent.

1. $(r, s) \in D(p)$.
2. $H_{r} \equiv H_{r-s} \equiv H_{s} \bmod p$.
3. $\binom{r}{s} \equiv(-1)^{r-s}\binom{p-1-s}{r-s} \equiv(-1)^{s}\binom{p-1-r+s}{s} \bmod p^{2}$.

Proof. First we show that

$$
\begin{equation*}
\binom{p a+r}{p b+s} \equiv\binom{a}{b}\binom{r}{s} \quad \bmod p^{2} \tag{8}
\end{equation*}
$$

for all $a \geq 0$ and $b \geq 0$ if and only if $H_{r} \equiv H_{r-s} \equiv H_{s} \bmod p$. By Theorem 4 ,

$$
\binom{p a+r}{p b+s} \equiv\binom{a}{b}\binom{r}{s}\left(1+p a\left(H_{r}-H_{r-s}\right)+p b\left(H_{r-s}-H_{s}\right)\right) \quad \bmod p^{2}
$$

Clearly, if $H_{r} \equiv H_{r-s} \equiv H_{s} \bmod p$, then Congruence 8 holds for all $a \geq 0$ and $b \geq 0$. Conversely, assume Congruence (8) holds for all $a \geq 0$ and $b \geq 0$. Since $\binom{r}{s}$ is not divisible by p, this, along with Theorem 4, implies

$$
\binom{a}{b} \equiv\binom{a}{b}\left(1+p a\left(H_{r}-H_{r-s}\right)+p b\left(H_{r-s}-H_{s}\right)\right) \quad \bmod p^{2}
$$

Setting $a=1$ and $b=0$ shows that $H_{r} \equiv H_{r-s} \bmod p$. Now setting $a=1$ and $b=1$ shows that $H_{r-s} \equiv H_{s} \bmod p$.

Next we show the equivalence of the second and third statements. We see from Proposition 6 that $H_{r} \equiv H_{s} \bmod p$ if and only if

$$
\binom{r}{s} \equiv(-1)^{r-s}\binom{p-1-s}{r-s} \quad \bmod p^{2}
$$

Similarly, $H_{r} \equiv H_{r-s} \bmod p$ if and only if

$$
\binom{r}{r-s} \equiv(-1)^{s}\binom{p-1-r+s}{s} \quad \bmod p^{2}
$$

Since $\binom{r}{r-s}=\left(\begin{array}{l}r \\ s\end{array}\right.$, this implies that $H_{r} \equiv H_{r-s} \equiv H_{s} \bmod p$ if and only if $\binom{r}{s} \equiv$ $(-1)^{r-s}\binom{p-1-s}{r-s} \equiv(-1)^{s}\binom{p-1-r+s}{s} \bmod p^{2}$.

Theorem 8 and Proposition 5 imply that $D(p)$ is invariant under the symmetries of the equilateral triangle.

We conclude by returning to the discussion of Wieferich primes. Eisenstein [6] showed that $H_{(p-1) / 2} \equiv \frac{2-2^{p}}{p} \bmod p$ for $p \geq 3$. Therefore p is a Wieferich prime if and only if $H_{(p-1) / 2} \equiv 0 \bmod p$, which is equivalent to $\left(\frac{p-1}{2}, \frac{p-1}{2}\right) \in D(p)$ by Theorem 8. By rotational symmetry, p is a Wieferich prime if and only if

$$
\left\{\left(\frac{p-1}{2}, 0\right),\left(\frac{p-1}{2}, \frac{p-1}{2}\right),\left(p-1, \frac{p-1}{2}\right)\right\} \subseteq D(p)
$$

5. Acknowledgment

Thanks to Erin Craig for excellent input on the design of the graphics and for improvements to the presentation.

References

[1] Charles Babbage, Demonstration of a theorem relating to prime numbers, The Edinburgh Philosophical Journal 1 (1819) 46-49.
[2] D. F. Bailey, Two p^{3} variations of Lucas' theorem, Journal of Number Theory 35 (1990) 208-215. doi.org/10.1016/0022-314X(90)90113-6
[3] V. Brun, J. O. Stubban, J. E. Fjeldstad, R. Tambs Lyche, K. E. Aubert, W. Ljunggren, and E. Jacobsthal, On the divisibility of the difference between two binomial coefficients, Skandinaviske Matematikerkongress 11 (1949) 42-54.
[4] Kenneth Davis and William Webb, Lucas' theorem for prime powers, European Journal of Combinatorics 11 (1990) 229-233. doi.org/10.1016/S0195-6698(13)80122-9
[5] Kenneth Davis and William Webb, A binomial coefficient congruence modulo prime powers, Journal of Number Theory 43 (1993) 20-23. doi.org/10.1006/jnth. 1993.1002
[6] Gotthold Eisenstein, Neue Gattung zahlentheoretischer Funktionen, die von zwei Elementen abhängen und durch gewisse lineare Funktional-Gleichungen definiert werden, Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königl. Preuss. Akademie der Wissenschaften zu Berlin (1850) 36-42.
[7] Ira Gessel, Some congruences for Apéry numbers, Journal of Number Theory 14 (1982) 362-368. doi.org/10.1016/0022-314X (82) 90071-3
[8] James W. L. Glaisher, Congruences relating to the sums and products of the first n numbers and to other sums and products, The Quarterly Journal of Pure and Applied Mathematics 31 (1900) 1-35.
[9] Andrew Granville, Binomial coefficients modulo prime powers, Canadian Mathematical Society Conference Proceedings 20 (1997) 253-275.
[10] G. S. Kazandzidis, Congruences on the binomial coefficients, Bulletin of the Greek Mathematical Society 9 (1968) 1-12.
[11] Édouard Lucas, Sur les congruences des nombres eulériens et des coefficients différentiels des functions trigonométriques, suivant un module premier, Bulletin de la Société Mathématique de France 6 (1878) 49-54.
[12] Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory 2 (2016) Article 5. doi.org/10.1007/s40993-016-0036-8
[13] Romeo Meštrović, Lucas' theorem: its generalizations, extensions and applications (18782014), https://arxiv.org/abs/1409.3820.
[14] Frank Morley, Note on the congruence $2^{4 n} \equiv(-)^{n}(2 n)!/(n!)^{2}$, where $2 n+1$ is a prime, Annals of Mathematics 9 (1894-1895) 168-170. doi.org/10.2307/1967516
[15] Eric Rowland and Reem Yassawi, Automatic congruences for diagonals of rational functions, Journal de Théorie des Nombres de Bordeaux 27 (2015) 245-288. doi.org/10.5802/jtnb. 901
[16] Eric Rowland, Reem Yassawi, and Christian Krattenthaler, Lucas congruences for the Apéry numbers modulo p^{2}, Integers 21 (2021) Article A20.
[17] Chua Cheong Siong, A simple proof of Ljunggren's binomial congruence, The American Mathematical Monthly 121 (2014) 162-164. doi.org/10.4169/amer.math.monthly.121.02. 162
[18] Joseph Wolstenholme, On certain properties of prime numbers, The Quarterly Journal of Pure and Applied Mathematics 5 (1862) 35-39.
[19] Kit Ming Yeung, On congruences for binomial coefficients, Journal of Number Theory 33 (1989) 1-17. doi.org/10.1016/0022-314X(89)90056-5
[20] Jianqiang Zhao, Bernoulli numbers, Wolstenholme's theorem, and p^{5} variations of Lucas' theorem, Journal of Number Theory 123 (2007) 18-26. doi.org/10.1016/j.jnt.2006.05. 005

Department of Mathematics, Hofstra University, Hempstead, NY, USA

[^0]: Date: February 11, 2022.

