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Abstract. IntegerSequences is a Mathematica package for comput-
ing with integer sequences. Its support for k-regular sequences includes
basic closure properties, guessing recurrences, and computing automata.
Recent applications have included establishing the structure of extremal
a/b-power-free words, obtaining a product formula for the generating
function enumerating binomial coefficients by their p-adic valuations, and
proving congruences for combinatorial sequences modulo prime powers.
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1 Introduction

IntegerSequences [9] is a Mathematica package for identifying and comput-
ing with integer sequences from a variety of classes. It has a particular emphasis
on the class of k-regular sequences, which arise widely in combinatorics, number
theory, and theoretical computer science. The following code loads the package,
assuming it is downloaded to one of the directories listed in $Path (the recom-
mended location being the Applications subdirectory of $UserBaseDirectory).

A notebook version of this extended abstract containing executable code is
available from the author’s web site1.

The following set of subsequences is central to the definition of a k-regular
sequence.

Definition 1. Let k ≥ 2 be an integer. The k-kernel of a sequence s(n)n≥0 is
the set

{s(ken+ i)n≥0 : e ≥ 0 and 0 ≤ i ≤ ke − 1}.

The k-kernel is the base-k analogue of the set of shifts {s(n+ i)n≥0 : i ≥ 0}.
A sequence s(n)n≥0 (such as the Fibonacci sequence) is constant-recursive if
{s(n+ i)n≥0 : i ≥ 0} is contained in a finite-dimensional vector space. We define
k-regular (or k-constant-recursive) sequences analogously.

1 https://wolfr.am/uZ4DJDth

https://people.hofstra.edu/Eric_Rowland/papers/IntegerSequences--_a_package_for_computing_with_k-regular_sequences.nb
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Definition 2. Let k ≥ 2 be an integer. A sequence s(n)n≥0 with entries in a
field F is k-regular if its k-kernel is contained in a finite-dimensional F -vector
space.

For example, consider the ruler sequence [6, A007814]

0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, . . .

whose nth term s(n) is the exponent of 2 in the prime factorization of n + 1.
The ruler sequence is 2-regular, since the recurrence

s(2n) = 0

s(4n+ 1) = −s(n) + s(2n+ 1) (1)

s(4n+ 3) = −s(n) + 2s(2n+ 1)

establishes that the 2-kernel is contained in the Q-vector space generated by
s(n)n≥0 and s(2n+ 1)n≥0.

The class of k-regular sequences was introduced by Allouche and Shallit [1],
who established several equivalent characterizations and a number of fundamen-
tal properties. In particular, s(n)n≥0 is k-regular if and only if there exists some
integer r ≥ 0 (the dimension of the associated vector space), r × r matrices
M(0),M(1), . . . ,M(k − 1), a 1× r vector u, and an r × 1 vector v such that

s(n) = uM(n0)M(n1) · · · M(n`) v

for all n ≥ 0, where n` · · ·n1n0 is the standard base-k representation of n [1,
Lemma 4.1]. For example, the ruler sequence can be represented by

u =
[
1 0
]

M(0) =

[
0 0
−1 1

]
M(1) =

[
0 1
−1 2

]
v =

[
0
1

]
.

The matrices M(0) and M(1) encode the recurrence (1). The vector v contains
the 0th term of each generator sequence, namely s(0) = 0 and s(2 · 0 + 1) =
s(1) = 1. The vector u specifies which linear combination of the generators we
are interested in, namely s(n)n≥0 = 1 · s(n)n≥0 + 0 · s(2n+ 1)n≥0.

IntegerSequences uses the matrices M(d) and the vectors u, v to represent
a k-regular sequence. The syntax is as follows.

The design of RegularSequence parallels the built-in Mathematica symbol for
representing a holonomic sequence, DifferenceRoot2. Passing an argument to
a RegularSequence object computes a term of the sequence.

2 http://reference.wolfram.com/language/ref/DifferenceRoot.html

https://oeis.org/A007814
http://reference.wolfram.com/language/ref/DifferenceRoot.html
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Basic closure properties for k-regular sequences established in [1] are imple-
mented in the function RegularSequenceReduce, which attempts to reduce an
expression to a single RegularSequence object. The following writes the Stern–
Brocot and Thue–Morse sequences as 2-regular sequences and then computes
their sum.

2 Guessing a k-regular sequence

Given the first N terms of a sequence, one is frequently interested in guessing
a general form for the sequence. A procedure for guessing k-regular sequences
was described by Shallit [14]. The implementation in IntegerSequences works
by maintaining a set B of generators, a set R of relations, and a set of k-kernel
sequences S which have not yet been written as a linear combination of elements
of B. Initialize B = {}, R = {}, and S = {s(n)n≥0}. While S 6= {}, remove a
sequence t(n)n≥0 from S and determine, using the known terms, whether it is
a linear combination of elements of B; if it is, add the linear relation to R;
if it is not, add t(n)n≥0 to B as a new generator and add its k subdivisions
t(kn + 0)n≥0, . . . , t(kn + (k − 1))n≥0 to S. When S becomes empty, we have
determined a conjectural basis B such that every element of the k-kernel can
be written as a linear combination of the elements of B. The set of relations R,
along with the initial term of each element of B, uniquely determines a sequence
that agrees with s(n)n≥0 on the known terms.

Since only finitely many terms of s(n)n≥0 are known, it is possible that as
we consider additional sequences from the k-kernel we will exhaust the known
terms. If elements of B which were previously known to be linearly independent
become linearly dependent due to truncating terms, then we do not have enough
terms to confidently guess a recurrence.

This algorithm is implemented in FindRegularSequenceFunction. To our
knowledge, this is the only publicly available guesser for k-regular sequences.
The first argument is the list of terms, and the second argument is k. The
following guesses a 2-regular representation for the number of 1s in the binary
representation of n.

A variant, FindRegularSequenceRecurrence, uses the same algorithm but out-
puts a recurrence rather than a RegularSequence object.
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More generally, FindRegularSequenceFunction supports guessing multidi-
mensional (k1, . . . , kd)-regular sequences s(n1, . . . , nd)n1≥0,...,nd≥0. Let νp(n) be
the p-adic valuation of n, that is, the exponent of the highest power of p dividing
n. The 2-dimensional sequence consisting of the 2-adic valuations of

(
n
m

)
(where

we treat ∞ as a formal symbol) is 2-regular:

We mention several applications where FindRegularSequenceFunction has
been used to guess a sequence or family of sequences.

For a rational number a
b > 1, a word w is an a

b -power if it can be written vex

where e is a non-negative integer, x is a prefix of v, and |w||v| = a
b . For example,

011101 is the 3
2 -power (0111)3/2 with v = 0111 and x = 01. The lexicographically

least 3
2 -power-free infinite word on the non-negative integers [6, A269518] is

00110210011200110310011300110210 · · · .

It is difficult a priori to guess whether the sequence of letters in such a word
is k-regular and, if so, to guess the correct value of k. However, through ex-
perimentation, FindRegularSequenceFunction revealed that the letters in the
lexicographically least 3

2 -power-free word form a 6-regular sequence [11].

https://oeis.org/A269518
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This discovery led to a large systematic study of the value of k for which the
lexicographically least a

b -power-free word is k-regular, although it is an open
question whether a k always exists [8].

Enumeration questions in combinatorics on words often turn out to have an-
swers given by k-regular sequences for appropriate values of k. An explanation
of this phenomenon in many cases was given by Charlier, Rampersad, and Shal-
lit [2]. However, k-regular sequences also appear in enumeration questions not
covered by their framework. For example, the `-abelian complexity for many in-
finite words appears to be k-regular. The `-abelian complexity of an infinite word
counts factors up to `-abelian equivalence — that is, two factors x and y are
considered the same if |x|v = |y|v for each word v of length ≤ `. The 2-regularity
of the 2-abelian complexities of two well-known words, the Thue–Morse word
and the period-doubling word, were established by proving the 2-regularity of
sequences satisfying a general reflection recurrence [7]. The 2-regular recurrences
for such sequences were guessed by FindRegularSequenceFunction.

The intended use case of FindRegularSequenceFunction is a sequence of
integers. However, the code is sufficiently general to support sequences of poly-
nomials. Again, let νp(n) denote the p-adic valuation of n. Spiegelhofer and Wall-
ner [15] considered the generating function counting binomial coefficients by their
p-adic valuations νp(

(
n
m

)
). For each prime p, FindRegularSequenceFunction is

able to guess a p-regular recurrence for this generating function. For p = 2 we
obtain the following. Note that the matrix entries are now polynomials in the
formal variable x.

The basis chosen by FindRegularSequenceFunction may not be the most
natural basis, since it (a) necessarily consists of k-kernel elements and (b) de-
pends on the order in which the k-kernel is traversed. By performing a suitable
change of basis for each prime p, the author conjectured the following, which
can be proved by a bijective argument [10].

Theorem 1. Let p be a prime. For each d ∈ {0, 1, . . . , p− 1}, let Mp(d) be the
2× 2 matrix

Mp(d) =

[
d+ 1 p− d− 1
d x (p− d)x

]
.

Let n ≥ 0, and let n` · · ·n1n0 be the standard base-p representation of n. Then

n∑
m=0

xνp((
n
m)) =

[
1 0
]
Mp(n0)Mp(n1) · · · Mp(n`)

[
1
0

]
.

This theorem generalizes a well-known result of Fine [5] on the number of
binomial coefficients not divisible by p. More generally, the analogous sequence
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of generating functions enumerating multinomial coefficients by their p-adic val-
uations is p-regular [10].

3 Computing automata for sequences modulo pα

A k-regular sequence whose terms take on finitely many distinct values is called
k-automatic. This name derives from the characterization of k-automatic se-
quences as sequences whose nth term is the output of an automaton when fed
the base-k digits of n.

Many integer sequences that arise in combinatorics have the property that
reducing each term modulo pα produces a p-automatic sequence. For algebraic
sequences modulo p, this is explained by Christol’s theorem, which states that
a sequence over a finite field of characteristic p is p-automatic if and only if its
generating function is algebraic [3]. Therefore, if

∑
n≥0 s(n)xn ∈ ZJxK is algebraic

(as it is for the Catalan numbers, for example), then
∑
n≥0(s(n) mod p)xn ∈

FpJxK is algebraic, so (s(n) mod p)n≥0 is p-automatic. In IntegerSequences
this is implemented in AutomaticSequenceReduce. The following computes a 3-
automatic sequence, represented by an automaton, for the nth Catalan number
modulo 3.

The function AutomatonGraph produces the Graph object corresponding to an
automaton.

More generally, if s(n)n≥0 is the diagonal of the power series of a multi-

variate rational expression f
g whose denominator’s constant term g(0, . . . , 0) is

nonzero modulo p, then (s(n) mod pα)n≥0 is p-automatic. An automaton for this
sequence can be computed by embedding the p-kernel into the space of rational
expressions with a certain fixed denominator [12]. The diagonal of a rational
power series is represented in IntegerSequences by DiagonalSequence.
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Computing automata for sequences modulo pα provides routine proofs of
many congruences that were established in the literature by nontrivial case
analyses. For example, Eu, Liu, and Yeh [4] proved that no Motzkin number
is divisible by 8. The following computation proves this in less than a second.
The resulting automaton has 24 states.

Closely related to diagonal sequences are constant-term sequences. Let f and
g be (possibly multivariate) Laurent polynomials, and let s(n) be the constant
term of fng. An automaton for (s(n) mod pα)n≥0 can be computed similarly [13].
AutomaticSequenceReduce also implements this algorithm. Constant-term se-
quences are represented by ConstantTermSequence, where the first argument is
f and the second argument is g.

In fact that constant-term sequence is the sequence of Motzkin numbers, so we
have established that no Motzkin number is divisible by 25.

For many sequences, including the sequences of Catalan and Motzkin num-
bers, the constant-term representation is preferable to the diagonal representa-
tion since it uses polynomials in a single variable, whereas the diagonal repre-
sentation requires at least two variables.
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