
Decision Algorithms for Fibonacci-Automatic Words, II:
Related Sequences and Avoidability

Chen Fei Du1, Hamoon Mousavi1, Eric Rowland2,
Luke Schaeffer3, and Jeffrey Shallit1

October 10, 2016

Abstract

We use a decision procedure for the “Fibonacci-automatic” words to solve problems
about a number of different sequences. In particular, we prove that there exists an
aperiodic infinite binary word avoiding the pattern xxxR. This is the first avoidability
result concerning a nonuniform morphism proven purely mechanically.

Key words and phrases: automatic sequence; decision procedure; avoidability in words; finite
automata; Fibonacci representation; palindrome.

1 Introduction

This is the second of three papers on the application of logical methods to solve problems
in combinatorics on words. In a previous paper [22], we introduced a decision procedure
for the “Fibonacci-automatic” words. These are infinite words (an)n≥0 that are generated
by finite automata in the following sense: the input to the automaton is the Fibonacci (or
“Zeckendorf”) representation w of the number n (see [18, 30]). The output associated with
the last state reached upon reading w is then an. (If a state has no output associated with
it, then by default the output is 1 for an accepting state and 0 for a nonaccepting state.)

Recall that the Fibonacci numbers are defined by F0 = 0, F1 = 1, and Fn = Fn−1 +Fn−2

for n ≥ 2. Later, we will also need the associated Lucas numbers, defined by L0 = 2, L1 = 1,
and Ln = Ln−1 + Ln−2 for n ≥ 2.

1School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
cfdu@uwaterloo.ca, sh2mousa@uwaterloo.ca, shallit@uwaterloo.ca .

2Department of Mathematics, Hofstra University, Hempstead, NY 11549-1000, USA;
eric.rowland@hofstra.edu .

3Computer Science and Artificial Intelligence Laboratory, The Stata Center, MIT Building 32, 32 Vassar
Street, Cambridge, MA 02139 USA; lrschaeffer@gmail.com .

1

A classical theorem states that every non-negative integer can be represented, in an
essentially unique way, as a sum of Fibonacci numbers (Fi)i≥2, subject to the constraint
that no two consecutive Fibonacci numbers are used. See [23, 18, 30, 7, 13]. Such a Fi-
bonacci representation can be written as a binary string a1a2 · · · an representing the integer∑

1≤i≤n aiFn+2−i. For w = a1a2 · · · an ∈ Σ∗2, we define [a1a2 · · · an]F :=
∑

1≤i≤n aiFn+2−i, even
if a1a2 · · · an has leading zeroes or consecutive 1’s. By (n)F we mean the canonical Fibonacci
representation for the integer n, having no leading zeroes or consecutive 1’s. For example,
(43)F = 10010001 and [0100101]F = 17.

The canonical example of a Fibonacci-automatic word is the infinite Fibonacci word

f = (fi)i≥0 = 01001010 · · ·

where fi is the last (least significant) digit in the Fibonacci representation of i. In a previous
paper [22], we showed that many known and some new properties of f can be proved by a
logical decision procedure involving automata.

In this paper we apply our method to some related Fibonacci-automatic sequences. In
particular, we study the aperiodic Rote-Fibonacci word, and show that it avoids the pattern
xxxR. To the best of our knowledge, this is the first nontrivial avoidability property proved
purely mechanically, using a decision procedure based on Fibonacci representation. With
a more involved argument, we also give an infinite class of periodic words avoiding xxxR.
We also study the Fibonacci-Thue-Morse sequence. Finally, we show how to obtain a result
about the avoidance of additive squares, using our technique.

The main technique we use is to write assertions about sequences in the first-order
theory of the natural numbers with addition, also allowing indexing into the Fibonacci-
automatic sequences under consideration. Given a logical predicate making an assertion
about a Fibonacci-automatic sequence, the decision procedure of [22] translates this predi-
cate into an automaton accepting the Fibonacci representation of the free variables making
the predicate true. A few details about the implementation, called Walnut, are in Section 7;
it is freely available for download. We provide Walnut commands for many of the examples
in this paper, allowing the reader to verify them independently.

2 Basics

We recall some basic definitions of combinatorics on words. By |x| we mean the length of the
word x. By ε we mean the empty word. A square is a nonempty word of the form x2 = xx,
like the English word murmur. The order of a square xx is the length |x|. Similarly, a cube is a
nonempty word of the form x3 = xxx, and so forth. An overlap is a word of the form axaxa,
where a is a single letter and x is a (possibly empty) word, like the English word alfalfa.
Its order is defined to be |ax|. A superoverlap is a word of the form abxabxab, where a, b are
single letters and x is a (possibly empty) word, like the English word tingalingaling with
the first letter removed.

By xR we mean the reversal of the word x; for example, (drawer)R = reward. A word x
is a palindrome if x = xR.

2

We define the morphism x→ x over the alphabet {0, 1} by 0 = 1 and 1 = 0. This is, of
course, extended to words (both finite and infinite) by applying the map to each letter. A
nonempty binary word w is an antisquare if it can be written in the form w = xx, and it
is an antipalindrome if it satisfies x = xR. Of course, any antipalindrome must be of even
length; its order is defined to be half its length.

We say that v is a factor of a word x if we can write x = uvw for (possibly empty)
words u,w. In the same situation, u is a prefix of x and w is a suffix. These definitions are
generalized to infinite words in the obvious way.

For an infinite word a = a0a1a2 · · · we define a[i] = ai and a[i..j] = aiai+1 · · · aj. By xω

we mean the infinite word xxx · · · .
We say an infinite word w avoids squares if w contains no factor that is a square. Avoid-

ance for other kinds of patterns is defined analogously. Avoidance in words is a subject of
intensive study in combinatorics on words (see, e.g., [25]).

In the next section, we will also need the finite Fibonacci words (Xn), defined as follows:

Xn =

ε, if n = 0;

1, if n = 1;

0, if n = 2;

Xn−1Xn−2, if n > 2.

Note that |Xn| = Fn for n ≥ 1. The word Xn (for n 6= 1) is the prefix of length Fn of f .

3 Avoiding the pattern xxxR and the Rote-Fibonacci

word

In this section we show how to apply our decision method to an interesting and novel
avoidance property: avoiding the pattern xxxR . An example matching this pattern in
English is a factor of the word bepepper, with x = ep. In this paper, however, we are
concerned only with the binary alphabet Σ2 = {0, 1}.

Although avoiding patterns with reversal has been considered before in several papers
(e.g., [26, 2, 9, 1, 12, 19]), it seems our particular problem is new.

If the goal is just to produce some infinite word avoiding xxxR, then a solution seems
easy: namely, the infinite word (01)ω clearly avoids xxxR, since (as the referee observed)
an occurrence of xxR implies two consecutive identical letters. This suggests the problem
of determining which periodic infinite words avoid xxxR. In Theorem 12 we give a partial
answer to this question, but for the moment, we change our question to

Are there infinite aperiodic binary words avoiding xxxR?

To answer this question, we will study a special infinite word, which we call the Rote-
Fibonacci word. (The name comes from the fact that it is a special case of a class of words
discussed in 1994 by Rote [28].) Consider the following transducer T :

3

q0 q1

0/00, 1/0

0/11, 1/1

Figure 1: Transducer converting Fibonacci words to Rote-Fibonacci words

This transducer acts on words by following the transitions and outputting the concate-
nation of the outputs associated with each transition. Thus, for example, the input 01001
gets transduced to the output 00100110.

Before we state our first theorem, we introduce some notation.

• |x|l denotes the number of occurrences of the letter l in the string x;

• C(x) denotes x, the complement of x, so that C(0) = 1 and C(1) = 0;

• For a word a defined over Z by −a we mean the word obtained from x by changing
the sign of every letter;

• For a word a = a0a1a2 · · · defined over Z by ∆(a) we mean (a1 − a0)(a2 − a1) · · · , the
first differences of a;

• s(x) denotes the sequence arising from a binary sequence x by changing every second
1 to −1;

• Σ(x) denotes the running sum of the sequence x; that is, if x = a1a2a3 · · · then Σ(x)
is a1(a1 + a2)(a1 + a2 + a3) · · · ;

• hω(a), for a morphism h and a letter a, is the infinite fixed point obtained by iterating
h on the letter a.

Theorem 1. The Rote-Fibonacci word

r = 001001101101100100110110110010010011011001001001101100100100 · · · = r0r1r2 · · ·

has the following equivalent descriptions:

(a) As the output of the transducer T , starting in state 0, on input f .

4

(b) As τ(hω(a)), where h and τ are defined by

h(a) = ab1 τ(a) = 0

h(b) = a τ(b) = 1

h(a0) = a2b τ(a0) = 0

h(a1) = a0b0 τ(a1) = 1

h(a2) = a1b2 τ(a2) = 1

h(b0) = a0 τ(b0) = 0

h(b1) = a1 τ(b1) = 0

h(b2) = a2 τ(b2) = 1

(c) As the binary sequence generated by the following deterministic finite automaton with out-
put (DFAO), with outputs given in the states, and input giving the Fibonacci representation
of n.

a/0 b1/0 a1/1 b0/0 b/1 a0/0 a2/1 b2/1

0

1 0 1

0

0

0

1

0

0

1

0

Figure 2: Canonical Fibonacci representation DFAO generating the Rote-Fibonacci word

(d) As the limit, as n→∞, of the sequence of finite Rote-Fibonacci words (Rn)n defined as
follows: R0 = 0, R1 = 00, and for n ≥ 3

Rn =

{
Rn−1Rn−2, if n ≡ 0 (mod 3);

Rn−1Rn−2, if n ≡ 1, 2 (mod 3).

(e) As the sequence obtained from the Fibonacci sequence f = f0f1f2 · · · = 0100101001001 · · ·
as follows: first, change every 0 to 1 and every 1 to 0 in f , obtaining f = 1011010110110 · · · .
Next, in f change every second 1 that appears to −1 (which we write as 1 for clarity): s(f) =
1011010110110 · · · . Now take the running sum Σ of this sequence, obtaining Σ(s(f)) =
1101100100100 · · · , and finally, complement it to get r.

(f) As ρ(gω(a)), where g and ρ are defined as follows

g(a) = abcab ρ(a) = 0

g(b) = cda ρ(b) = 0

g(c) = cdacd ρ(c) = 1

g(d) = abc ρ(d) = 1

5

Proof. (a) ⇐⇒ (d): Let T0(x) (resp., T1(x)) denote the output of the transducer T starting
in state q0 (resp., q1) on input x. Then a simple induction on n shows that T0(Xn+1) = Rn

and T1(Xn+1) = Rn. We give only the induction step for the first claim:

T0(Xn+1) = T0(XnXn−1)

=

{
T0(Xn)T0(Xn−1), if |Xn| is even;

T0(Xn)T1(Xn−1), if |Xn| is odd;

=

{
Rn−1Rn−2, if n ≡ 0 (mod 3);

Rn−1Rn−2, if n 6≡ 0 (mod 3);

= Rn.

Here we have used the easily-verified fact that |Xn| = Fn is even iff n ≡ 0 (mod 3).

(b) ⇐⇒ (d): We verify by a tedious induction on n that for n ≥ 0 we have

τ(hn(a)) = τ(hn+1(b)) = Rn

τ(hn(ai)) = τ(hn+1(bi)) =

{
Ri, if n ≡ i (mod 3);

Ri, if n 6≡ i (mod 3).

(c) ⇐⇒ (b): Follows from the well-known transformation from automata to morphisms
and vice versa (see, e.g., [17]).

(d) ⇐⇒ (e): We have

Σ(s(xy)) =

{
Σ(s(x)) Σ(s(y)), if |x|1 even;

Σ(s(x)) C(Σ(s(y))), if |x|1 odd.

Then we claim that C(Rn) = Σ(s(C(Xn+2))). This can be verified by induction on n. We
give only the induction step:

Σ(s(C(Xn+2))) = Σ(s(C(Xn+1)C(Xn)))

=

{
Σ(s(C(Xn+1))) Σ(s(C(Xn))), if |C(Xn+1)|1 even;

Σ(s(C(Xn+1))) C(Σ(s(C(Xn)))), if |C(Xn+1)|1 odd;

=

{
C(Rn−1) C(Rn−2), if n ≡ i (mod 3);

C(Rn−1) Rn−2, if n 6≡ i (mod 3);

= C(Rn).

(b) ⇐⇒ (f): Define γ by

γ(a) = γ(a0) = a

γ(b0) = γ(b1) = b

γ(a1) = γ(a2) = c

γ(b) = γ(b2) = d.

6

We verify by a tedious induction on n that for n ≥ 0 we have

gn(a) = γ(h3n(a)) = γ(h3n(a0))

gn(b) = γ(h3n(b0)) = γ(h3n(b1))

gn(c) = γ(h3n(a1)) = γ(h3n(a2))

gn(d) = γ(h3n(b)) = γ(h3n(b2)).

Corollary 2. The first differences ∆r of the Rote-Fibonacci word r, taken modulo 2, give
the complement of the Fibonacci word f , with its first symbol omitted.

Proof. Note that if x = a0a1a2 · · · is a binary sequence, then ∆(C(x)) = −∆(x). Fur-
thermore ∆(Σ(x)) = a1a2 · · · . Now from the description in part (e), above, we know that
r = C(Σ(s(C(f)))). Hence ∆(r) = ∆(C(Σ(s(C(f))))) = −∆(Σ(s(C(f)))) = dr(−s(C(f))),
where dr drops the first symbol of its argument. Taking the last result modulo 2 gives the
result.

As it turns out, the Rote-Fibonacci word has (essentially) appeared before in several
places. For example, in a 2009 preprint of Monnerot-Dumaine [20], the author studies a
plane fractal called the “Fibonacci word fractal”, specified by certain drawing instructions,
which can be coded over the alphabet S,R, L by taking the fixed point gω(a) and applying
the coding η(a) = S, η(b) = R, η(c) = S, and η(d) = L. Here S means “move straight one
unit”, “R” means “right turn one unit” and “L” means “left turn one unit”.

More recently, Blondin Massé, Brlek, Labbé, and Mendès France studied a remarkable
sequence of finite words closely related to r [3, 4, 5]. For example, in their paper “Fibonacci
snowflakes” [3] they defined a certain sequence (qn)n≥0, as follows:

qn =

ε, if n = 0;

R, if n = 1;

qn−1qn−2, if n ≡ 2 (mod 3);

qn−1qn−2, if n > 1 and n ≡ 0, 1 (mod 3).

Here L = R and R = L. This sequence has the following relationship to g: let ξ(a) = ξ(b) = L,
ξ(c) = ξ(d) = R. Then

R ξ(gn(a)) = q3n+2 L.

3.1 Avoidability of xxxR

We are now ready to prove our avoidability result. This is the first main result of the paper.

Theorem 3. The Rote-Fibonacci word r is not ultimately periodic, but it avoids the pattern
xxxR.

7

Proof. If r were ultimately periodic, there would be a period p ≥ 1 and a position n after
which the period begins. We can assert this using the predicate

∃n ≥ 0 ∃p ≥ 1 ∀i ≥ n r[i] = r[i+ p],

or, as expressed in Walnut

eval rfperiod "?msd fib En Ep ((p>=1) & Ai (i>=n) => R[i]=R[i+p])":

When we now use our decision procedure, we get the answer false, so r is aperiodic.
Next, we define two useful predicates:

RFEqFact(i, j, n) := ∀t < n (r[i+ t] = r[j + t])

RFEqRevFact(i, j, n) := ∀t < n (r[i+ t] = r[j − t− 1]),

which, in Walnut, are expressed as

def rfeqfact "?msd fib At (t<n) => R[i+t]=R[j+t]":

def rfeqrevfact "?msd fib At (t<n) => R[i+t]=R[j-t-1]":

The first predicate expresses the assertion that the length-n factors of r beginning at positions
i and j are identical, and the second predicate expresses the assertion that the length-n factor
beginning at position i is the reverse of the length-n factor ending at position j − 1.

Now we use Walnut to prove the desired result. A predicate expressing the assertion that
there exists a factor of the form xxxR of length n is as follows:

∃i (RFEqFact(i, i+ n, n) ∧ RFEqRevFact(i, i+ 3n, n)),

or, in Walnut,

eval xxxr "?msd fib Ei ($rfeqfact(i,i+n,n) & $rfeqrevfact(i,i+3*n,n))":

When we run this on our program, the only length n accepted is n = 0, so the Rote-Fibonacci
word r contains no occurrences of the pattern xxxR.

4 Other properties of the Rote-Fibonacci word

We continue by proving some basic properties of r.

Theorem 4.

(a) All squares in the Rote-Fibonacci word are of order F3n+1 for n ≥ 0, and each such
order occurs.

(b) All cubes in the Rote-Fibonacci word are of order F3n+1 for n ≥ 1, and each such order
occurs.

(c) There are palindromes of all lengths ≥ 0 in the Rote-Fibonacci word.

8

(d) There are antipalindromes of all orders ≥ 0 in the Rote-Fibonacci word.

(e) All antisquares in the Rote-Fibonacci word are of order F3n+2 and F3n+3 for n ≥ 0,
and all such orders occur.

Proof. We use the following predicates:

RFSquare(n) := (n ≥ 1) ∧ ∃i RFEqFact(i, i+ n, n)

RFCube(n) := (n ≥ 1) ∧ ∃i RFEqFact(i, i+ n, 2n)

RFPal(n) := ∃i RFEqRevFact(i, i+ n, n)

RFAntipal(n) = ∃i ∀t < n r[i] 6= r[i+ 2n− t− 1]

RFAntisquare(n) = (n ≥ 1) ∧ ∃i ∀t < n r[i] 6= r[i+ n+ t],

or, in Walnut,

eval rfsquare "?msd fib (n>=1) & (Ei $rfeqfact(i,i+n,n))":

eval rfcube "?msd fib (n>=1) & (Ei $rfeqfact(i,i+n,2*n))":

eval rfpal "?msd fib Ei $rfeqrevfact(i,i+n,n)":

eval rfantipal "?msd fib Ei At (t<n) => R[i+t] != R[i+2*n-t-1]":

eval rfantisquare "?msd fib (n>=1) & Ei At (t<n) => R[i+t] != R[i+n+t]":

When we evaluate the predicate corresponding to (a), we get the automaton depicted in
Figure 3. Clearly the accepted words correspond to F3n+1 for n ≥ 0.

0

(0)

1
(1)

2
(0)

3
(0)

4

(0)

(0)

Figure 3: Automaton accepting orders of squares in the Rote-Fibonacci word

The predicate corresponding to (b) is similar. When we evaluate the predicate cor-
responding to (c), we get all lengths accepted. Similarly, evaluation of the predicate for
(d) gives all orders accepted. The predicate corresponding to (e) produces the automaton
depicted in Figure 4.

9

0

(0)

1
(1)

2
(0)

3

(0)

(0)

Figure 4: Automaton accepting orders of antisquares in the Rote-Fibonacci word

Theorem 5. The minimum q(n) over all periods of all length-n factors of the Rote-Fibonacci
word is as follows:

q(n) =

1, if 1 ≤ n ≤ 2;

2, if n = 3;

F3j+1, if j ≥ 1 and L3j ≤ n < L3j+2;

L3j+1, if j ≥ 1 and L3j+2 ≤ n < L3j+2 + F3j−2;

F3j+2 + L3j, if j ≥ 2 and L3j+2 + F3j−2 ≤ n < L3j+2 + F3j−1;

2F3j+2, if L3j+2 + F3j−1 ≤ n < L3j+3.

Proof. To prove this, we mimic the proof of Theorem 20 in [22], using the following predicates:

RFPer(i, j, p) := (i ≤ j) ∧ (p ≥ 1) ∧ (p+ i− 1 ≤ j) ∧ RFEqFact(i, i+ p, j + 1− p− i)
RFLeastPer(i, j, n) := RFPer(i, j, n) ∧ ∀n′, 1 ≤ n′ < n, ¬RFPer(i, j, n′)

RFLP(n) := ∃i ∃j RFLeastPer(i, j, n)

RFLPL(n, p) := (n ≥ 1) ∧ (∃i RFPer(i, i+ n− 1, p)) ∧
(∀j ∀q RFPer(j, j + n− 1, q) =⇒ (q ≥ p)),

or, in Walnut,

def rfper "?msd fib (i <= j) & (p >= 1) & (p+i <=j+1) & $rfeqfact(i,i+p,j+1-p-i)":

def rfleastper "?msd fib $rfper(i,j,n) & (Anp ((1<=np)&(np<n)) => (~$rfper(i,j,np)))":

def rflp "?msd fib Ei Ej $rfleastper(i,j,n)": def rflpl "?msd fib (n>=1) & (Ei

$rfper(i,i+n-1,p)) & (Aj Aq $rfper(j,j+n-1,q) => (q >= p))":

10

The automaton for RFLP is displayed below in Figure 5.

0

(0)

1
(1)

2
(0)

3

(0)

4

(1)

5
(0)

6

(1)

7

(0)

8
(0)

9(1)

10
(0)

11
(0)

12

(1)

13
(0)

14(1)15(0)

16
(0)

17

(1)

18

(0)

19
(1)

20
(0)

21
(0)

22
(1)

(0)(0)

(1)

23

(0)

24

(1)

25

(0)

(0)

26

(1)

27(0)

(1)

28(0)

29

(0)

30

(1)

31
(0)

(0)

32

(0)

(1) (0)

33

(0)

(1)

34
(0)

(1)

(0)

(0)

35

(1)

36

(0)

(1)

37
(0)

(1)

(0)

38(0)

(1) (0)

(0)

39

(0)
40

(1)

(1)

41

(0)

(0)

42

(0)

43
(1)

44
(0)

45

(0)

(1)

46(0)

47
(0)

48
(0)

49

(1)

50(0)

(1)

51
(0)

(1)

52
(0)

(0)

53

(1)

54(0)

(0)

(1)

(0)

(1)

55
(0)

(0)

(1)

(0)

(1)

(0)

Figure 5: Automaton accepting all least period lengths of factors of r

The automaton for RFLPL is displayed below in Figure 6.

0

(0,0)
1(1,0)

2
(1,1)

3
(0,0)

4

(0,1)

5

(0,0)

6
(0,1)

7
(0,0)

8

(1,0)

9

(1,0)

10
(0,0)

11(1,0)
12(0,0)

13

(1,0)

14

(0,0)

15

(0,1)

16
(0,0)

17

(0,1)

(0,0)

18

(1,0)

(0,0)

(0,0)

(0,1)

(1,1)

19

(1,0)

(0,0)

(0,1)

(0,0) (1,0)
(0,0)

(0,0)

(1,0)

20

(0,1)

(1,0)

(0,0)

(0,0)

(1,0)

Figure 6: Automaton accepting (n, p) where p is least period of length-n factors of r

Let α = (1 +
√

5)/2.

Corollary 6. The critical exponent of the Rote-Fibonacci word is 2 + α.

Proof. An examination of the cases in Theorem 5 shows that the words of maximum exponent
are those corresponding to n = L3j+2−1, p = F3j+1. As j →∞, the quantity n/p approaches
2 + α from below.

11

Recall that the subword complexity of a sequence w is the function counting number of
distinct factors of w of length n.

Theorem 7. The Rote-Fibonacci word has subword complexity 2n.

Proof. Follows from Corollary 2 together with [28, Thm. 3].

Theorem 8. The Rote-Fibonacci word is mirror invariant. That is, if z is a factor of r
then so is zR.

Proof. We use the predicate

∀i ∃j RFEqRevFact(i, j, n),

or, in Walnut,

eval rfmirror "?msd fib Ai Ej $rfeqrevfact(i,j,n)":

The resulting automaton accepts the representation of all n ≥ 0, so the conclusion follows.

Corollary 9. The Rote-Fibonacci word avoids the pattern xxRxR.

Proof. Suppose xxRxR occurs in r. Then by Theorem 8 we know that (xxRxR)R = xxxR

occurs in f . But this is impossible, by Theorem 3.

4.1 Conjectures and open problems about the Rote-Fibonacci word

In this section we collect some conjectures we have not yet been able to prove. We have
made some progress and hope to completely resolve them in the future.

Conjecture 10. Every infinite binary word avoiding the pattern xxxR has critical exponent
≥ 2 + α.

Conjecture 11. Let z be a finite nonempty primitive binary word. If zω avoids xxxR,
then |z| = 2F3n+2 for some integer n ≥ 0. Furthermore, z is a conjugate of the prefix
r[0..2F3n+2 − 1], for some n ≥ 0. Furthermore, for n ≥ 1 we have that z is a conjugate of
yy, where y = τ(h3n(a)).

We can make some partial progress on Conjecture 11 in the following theorem. Here we
give an infinite class of periodic infinite words avoiding the pattern xxxR. This is the second
main result of the paper.

Theorem 12. Let k ≥ 1 and define n = 2F3k+2. Let z = r[0..n−1]. Then the periodic word
zω contains no occurrence of the pattern xxxR.

12

Proof. Suppose that zω does indeed contain an occurrence of xxxR for some |x| = ` > 0.
We consider each possibility for ` and eliminate them in turn.

Case I: ` ≥ n.
There are two subcases:

Case I.1: n |/ `: In this case, by considering the first n symbols of each of the two occurrences
of x in xxxR in zω, we see that there are two different cyclic shifts of z that are identical.
This can only occur if r[0..n− 1] is a power, and we know from Theorem 4 and Corollary 6
that this implies that n = 2F3k+1 or n = 3F3k+1 for some k ≥ 0. But 2F3k+1 6= 2F3k′+2 and
3F3k+1 6= 2F3k′+2 provided k, k′ > 0, so this case cannot occur.

Case I.2: n | `: Then x is a conjugate of ze, where e = `/n. By a well-known result, a
conjugate of a power is a power of a conjugate; hence there exists a conjugate y of z such
that x = ye. Then xR = ye, so x and hence y is a palindrome. We can now create a predicate
that says that some conjugate of r[0..n− 1] is a palindrome:

∃i < n (∀j < n cmp(i+ j, n+ i− 1− j, n))

where

cmp(k, k′, n) := (((k < n) ∧ (k′ < n)) =⇒ (r[k] = r[k′])) ∧
(((k < n) ∧ (k′ ≥ n)) =⇒ (r[k] = r[k′ − n])) ∧
(((k ≥ n) ∧ (k′ < n)) =⇒ (r[k − n] = r[k′])) ∧

(((k ≥ n) ∧ (k′ ≥ n)) =⇒ (r[k − n] = r[k′ − n])),

or, in Walnut,

def cmp "?msd fib (((k<n)&(kp<n)) => (R[k]=R[kp])) & (((k<n)&(kp>=n)) =>

(R[k]=R[kp-n])) & (((k>=n)&(kp<n)) => (R[k-n]=R[kp])) & (((k>=n)&(kp>=n))

=> (R[k-n]=R[kp-n]))":

def rfconjpal "?msd fib Ei (i<n) & (Aj (j<n) => $cmp(i+j,n+i-1-j,n))":

The predicate cmp has three arguments k, k′, n: assuming 0 ≤ k, k′ < 2n, it is true iff
r[k mod n] = r[k′ mod n]. The predicate RFConjPal is true iff some conjugate of r[0..n−1]
is a palindrome. When we run this on Walnut, we discover that the only n with Fibonacci
representation of the form 10010i accepted are those with i ≡ 0, 2 (mod 3), which means
that 2F3k+2 is not among them. So this case cannot occur.

Case II: ` < n.
There are now four subcases to consider, depending on the number of copies of z needed

to “cover” our occurrence of xxxR. In Case II.j, for 1 ≤ j ≤ 4, we consider j copies of z and
the possible positions of xxxR inside that copy.

Because of the complicated nature of comparing one copy of x to itself in the case that one
or both overlaps a boundary between different copies of z, it would be very helpful to be able

13

z

x x xR

i i+ ` i+ 2` i+ 3`

z z

x x xR

z z z

x x xR

z z z z

x x xR

Case II.1:

i+ 3` < n

Case II.2:

n ≤ i+ 3` < 2n

Case II.3:

2n ≤ i+ 3` < 3n

Case II.4:

3n ≤ i+ 3` < 4n

Figure 7: Cases of the argument

to encode statements like r[k mod n] = r[` mod n] in our logical language. Unfortunately,
we cannot do this if n is arbitrary. So instead, we use a trick: assuming that the indices
k, k′ satisfy 0 ≤ k, k′ < 2n, we can use the cmp(k, k′) predicate introduced above to simulate
the assertion r[k mod n] = r[k′ mod n]. Of course, for this to work we must ensure that
0 ≤ k, k′ < 2n holds.

Cases II.1 through II.4 are illustrated in Figure 7. We assume that |x| = ` and xxxR

begins at position i of zω. We have the inequalities i < n and ` < n which apply to each
case. Our predicates are designed to compare the first copy of x to the second copy of x,
and the first copy of x to the xR.

Case II.1: If xxxR lies entirely within one copy of z, it also lies in r, which we have already
seen cannot happen, in Theorem 3. This case therefore cannot occur.

Case II.2: We use the predicate

∃i ∃` (i+3` ≥ n) ∧ (i+3` < 2n) ∧ (∀j < ` cmp(i+j, i+`+j)) ∧ (∀k < ` cmp(i+k, i+3`−1−k))

14

to assert that there is a repetition of the form xxxR.

Case II.3: We use the predicate

∃i ∃` (i+3` ≥ 2n) ∧ (i+3` < 3n) ∧ (∀j < ` cmp(i+j, i+`+j−n)) ∧ (∀k < ` cmp(i+k, i+3`−1−k−n))).

Case II.4: We use the predicate

∃i ∃` (i+3` ≥ 3n) ∧ (i+3` < 4n) ∧ (∀j < ` cmp(i+j, i+`+j−n)) ∧ (∀k < ` cmp(i+k, i+3`−1−k−2n)).

When we checked each of the cases II.2 through II.4 with our program, we discovered
that n = 2F3k+2 is never accepted. Actually, for these cases we had to employ one additional
trick, because the computation for the predicates as stated required more space than was
available on our machine. Here is the additional trick: instead of attempting to run the
predicate for all n, we ran it only for n whose Fibonacci representation was of the form
10010∗. This significantly restricted the size of the automata we created and allowed the
computation to terminate. In fact, we propagated this condition throughout the predicate.

We therefore eliminated all possibilities for the occurrence of xxxR in zω and so it follows
that no xxxR occurs in zω.

Very recently, Currie and Rampersad [10] have considered the problem of enumerating
the number of binary words of length n avoiding the pattern xxxR. In a very surprising
result, they proved that it is nΘ(logn). This is the first pattern-avoidance problem having this
form of growth rate.

Open Problem 13. How many binary words of length n avoid both the pattern xxxR and
(2 + α)-powers?

Call x minimal if xxxR has no proper factor of the form wwwR.

Conjecture 14. For n = F3k+1 there are 4 minimal x of length n. For n = F3k+1 ± F3k−2

there are 2 minimal x. Otherwise there are none.
For k ≥ 3 the 4 minimal words of length n = F3k+1 are given by r[pi..pi + n − 1],

i = 1, 2, 3, 4, where

(p1)F = 1000(010)k−3001

(p2)F = 10(010)k−2001

(p3)F = 1001000(010)k−3001

(p4)F = 1010(010)k−2001

For k ≥ 3 the 2 minimal words of length n = F3k+1−F3k−2 are given by r[qi..qi + n− 1],
i = 1, 2, where

(q1)F = 10(010)k−3001

(q2)F = 10000(010)k−3001

15

For k ≥ 3 the 2 minimal words of length n = F3k+1 +F3k−2 are given by r[si..si + n− 1],
i = 1, 2, where

(s1)F = 10(010)k−3001

(s2)F = 1000(01)k−2001

5 The Fibonacci-Thue-Morse sequence

In this section we briefly apply our method to another Fibonacci-automatic sequence, ob-
taining several new results.

Consider a Fibonacci analogue of the Thue-Morse sequence

v = (vn)n≥0 = 0111010010001100010111000101 · · ·

where vn is the sum of the bits, taken modulo 2, of the Fibonacci representation of n. We call
this the Fibonacci-Thue-Morse sequence; it was introduced in [29, Example 2, pp. 12–13]. It
is generated by the following automaton:

q0/0 q1/1 q2/1 q3/0

0

1 0

0

1

0

Figure 8: Automaton for the Fibonacci-Thue-Morse sequence v

Theorem 15.

(a) The only squares in v are of order 4 and Fn for n ≥ 2, and a square of each such order
occurs.

(b) The only cubes in v are the strings 000 and 111.

(c) The only overlaps in v are of order F2n for n ≥ 1, and an overlap of each such order
occurs.

(d) There are no super-overlaps in v.

(e) There are only 31 distinct palindromes in v (including the empty string). The longest
is of length 12.

16

Proof. We use the following predicates:

FTMSquare(n) := (n ≥ 1) ∧ ∃i ∀t < n v[i+ t] = v[i+ n+ t]

FTMCube(n) := (n ≥ 1) ∧ ∃i ∀t < 2n v[i+ t] = v[i+ n+ t]

FTMOverlap(n) = (n ≥ 1) ∧ ∃i ∀t ≤ n v[i+ t] = v[i+ n+ t]

FTMSuperoverlap(n) = (n ≥ 2) ∧ ∃i ∀t ≤ n+ 1 v[i+ t] = v[i+ n+ t]

FTMPal(n) := ∃i ∀t < n v[i+ t] = v[i+ n− t− 1]

The equivalent statements in Walnut are

eval ftmsquare "?msd fib (n>=1) & Ei At (t<n) => V[i+t] = V[i+n+t]":

eval ftmcube "?msd fib (n>=1) & Ei At (t<2*n) => V[i+t] = V[i+n+t]":

eval ftmoverlap "?msd fib (n>=1) & Ei At (t<=n) => V[i+t] = V[i+n+t]":

eval ftmsuperoverlap "?msd fib (n>=2) & Ei At (t<=n+1) => V[i+t] = V[i+n+t]":

eval ftmpal "?msd fib Ei At (t<n) => V[i+t] = V[i+n-t-1]":

When we run FTMSquare on Walnut we get the automaton depicted in Figure 9.

0

(0)

1
(1)

2
(0)

3
(0)

4

(1)

(0)

Figure 9: Orders of squares in the Fibonacci-Thue-Morse sequence

When we run FTMCube on Walnut we get an automaton that just accepts the order
n = 1, corresponding to the length-3 factors 000 and 111. When we run FTMOverlap
on Walnut we get an automaton that accepts the Fibonacci representations 1(00)∗, which
correspond to F2n for n ≥ 1. When we run FTMSuperoverlap we get an automaton
that accepts nothing. Finally, when we run FTMPal we get the automaton depicted in
Figure 10.

17

0

(0)

1
(1)

2
(0)

3(0)

4

(1)
5

(0)

6(1)

(0)

7(1)

(0)

(0)

Figure 10: Lengths of palindromes in the Fibonacci-Thue-Morse sequence

We might also like to show that v is recurrent. The obvious predicate for this property
holding for all words of length n is

∀i ∃j > i (∀t ((t < n) =⇒ (v[i+ t] = v[j + t]))).

Unfortunately, when we attempt to run this with our prover, we get an intermediate NFA
of 1159 states that we cannot determinize within the available space.

Instead, we rewrite the predicate, setting k := j − i and u := i+ t. This gives

∀i ∃j > i ∀k ≥ 1 ∀u, i ≤ u < n+ i (i = j + k) =⇒ v[u] = v[u+ k],

or, in Walnut,

eval ftmrecur "?msd fib Ai Ej ((j>i)&(Ak Av (((k>=1)&(i=j+k)&(v>=i)&(v<n+i)) =>

(V[v]=V[v+k]))))":

When we run this we discover that v is indeed recurrent.

Theorem 16. The word v is recurrent.

Another quantity of interest for the Thue-Morse-Fibonacci word v is its subword com-
plexity ρv(n). It is not hard to see that it is linear. To obtain a deeper understanding of it,
let us compute the first difference sequence d(n) = ρv(n+ 1)− ρv(n). It is easy to see that
d(n) is the number of words w of length n with the property that both w0 and w1 appear in
v. The natural way to count this is to count those i such that t := v[i..i+ n− 1] is the first
appearance of that factor in v, and there exists a factor v[k..k + n] of length n + 1 whose
length-n-prefix equals t and whose last letter v[k + n] differs from v[i+ n].

(∀j < i ∃t < n v[i+ t] 6= v[j+ t]) ∧ (∃k (∀u < n v[i+u] = v[k+u]) ∧ v[i+n] 6= v[k+n]).

18

Unfortunately the same blowup appears as in the recurrence predicate, so once again we
need to substitute, resulting in the predicate

(∀j < i ∃k ≥ 1 ∃v (i = j + k) ∧ (v ≥ j) ∧ (v < n+ j) ∧ v[u] 6= v[u+ k]) ∧
(∃l > i v[i+ n] 6= v[l + n]) ∧

(∀k′ ∀u′ (k′ ≥ 1) ∧ (l = i+ k′) ∧ (u′ ≥ i) ∧ (v′ < n+ i) =⇒ v[k′ + u′] = v[u′]),

or, in Walnut,

eval ftmsc "?msd fib (Aj (j<i) => (Ek Ev (k>=1)&(i=j+k)&(v>=j)&(v<n+j)&(V[v]!=V[v+k])))

& (El ((l>i) & (V[i+n] != V[l+n]) & (Akp Avp ((kp>=1)&(l=i+kp)&(vp>=i)&(vp<n+i))

=> (V[kp+vp]=V[vp]))))":

From the resulting 46-state automaton we can, as in [11], obtain a linear representation of
rank 46, of the form uµ((n)F)v, where µ is a certain matrix-valued morphism and u, v are
fixed vectors. We now consider all vectors of the form u{µ(0), µ(1)}∗. There are only finitely
many distinct vectors of this form, and from them we can construct an automaton that
generates the sequence (d(n))n≥0. We omit the details and just state the result.

Theorem 17. The first difference sequence (d(n))n≥0 of the subword complexity of v is
Fibonacci-automatic, and is generated by the following automaton.

1/1

0

2/2
1

3/4
0

5/6
0

6/10

1

7/6

0

8/6
1

9/8

0

10/6
0

11/8

1

12/8
0

13/6

0

14/6

1

15/60

16/6

1
17/8

0

18/8
0

19/8

1 1

20/6

0

0

0

1

0
1

23/8
0

0
1

0

0

1

1

0

Figure 11: Automaton computing d(n)

Note that states are not numbered consecutively in Figure 17.

6 Combining two representations and avoidability

In this section we show how our decidability method can be used to handle an avoidability
question where two different representations arise.

19

Let x be a finite word over the alphabet N∗ = {1, 2, 3 . . .}. We say that x is an additive
square if x = x1x2 with |x1| = |x2| and

∑
x1 =

∑
x2. For example, with the usual association

of a = 1, b = 2, and so forth, up to z = 26, we have that the English word baseball is an
additive square, as base and ball both sum to 27.

An infinite word x over N∗ is said to avoid additive squares if no factor is an additive
square. It is currently unknown, and a relatively famous open problem, whether there exists
an infinite word over a finite subset of N∗ that avoids additive squares [6, 24, 16, 14], although
it is known that additive cubes can be avoided over an alphabet of size 4 [8]. (Recently this
last result was improved to alphabet size 3; see [27].)

However, it is easy to avoid additive squares over an infinite subset of N∗; for example, any
sequence that grows sufficiently quickly will have the desired property. Hence it is reasonable
to ask about the lexicographically least sequence over N∗ that avoids additive squares. Such
a sequence begins

1213121421252131213412172 · · · ,
but we do not currently know if this sequence is unbounded.

Here we consider the following variation on this problem. Instead of considering arbitrary
sequences, we only consider sequences a = (ai)i≥1 satisfying a = S(b) for some sequence
b = (bi)i≥0, where S is the sequence transformation defined by

a[i] = b[ν2(i)]

for all i ≥ 1 and ν2(i) is the exponent of the largest power of 2 dividing i. (Note that a and b
are indexed differently.) For example, if b = 123 · · · , then a = 1213121412131215 · · · , the so-
called “ruler sequence”. It is known that a is squarefree and is, in fact, the lexicographically
least sequence over N∗ avoiding squares [15].

We then ask: what is the lexicographically least sequence avoiding additive squares that
is of the form S(b)? The following theorem gives the answer. This is our third and final
main result.

Theorem 18. The lexicographically least sequence over N∗ of the form S(b) that avoids
additive squares is

a = 1213121512131218 · · · ,
where b[i] := Fi+2.

Proof. First, we show that a := S(b) =
∏∞

k=1 b[ν2(k)] =
∏∞

k=1 Fν2(k)+2 avoids additive
squares. For m,n, j ∈ N, let A(m,n, j) denote the number of occurrences of j in ν2(m +
1), . . . , ν2(m+ n).

Consider two consecutive blocks of the same size, say ai+1 · · · ai+n and ai+n+1 · · · ai+2n.
Our goal is to compare the sums

∑
i<j≤i+n aj and

∑
i+n<j≤i+2n aj.

First we prove

Lemma 19. Let m, j ≥ 0 and n ≥ 1 be integers. Let A(m,n, j) denote the number of
occurrences of j in ν2(m+ 1), . . . , ν2(m+ n). Then for all m,m′ ≥ 0 we have

|A(m′, n, j)− A(m,n, j)| ≤ 1.

20

Proof. We start by observing that the number of positive integers ≤ n that are divisible
by t is exactly bn/tc. It follows that the number B(n, j) of positive integers ≤ n that are
divisible by 2j but not by 2j+1 is

B(n, j) =
⌊ n

2j

⌋
−
⌊ n

2j+1

⌋
. (1)

Now from the well-known identity

bxc+

⌊
x+

1

2

⌋
= b2xc,

valid for all real numbers x, substitute x = n/2j+1 to get⌊ n

2j+1

⌋
+

⌊
n

2j+1
+

1

2

⌋
=
⌊ n

2j

⌋
,

which, combined with (1), shows that

B(n, j) =

⌊
n

2j+1
+

1

2

⌋
.

Hence
n

2j+1
− 1

2
≤ B(n, j) <

n

2j+1
+

1

2
. (2)

Now the number of occurrences of j in ν2(m + 1), . . . , ν2(m + n) is A(m,n, j) = B(m +
n, j)−B(m, j). From (2) we get

n

2j+1
− 1 < A(m,n, j) <

n

2j+1
+ 1 (3)

for all m ≥ 0. Since A(m,n, j) is an integer, the inequality (3) implies that

|A(m′, n, j)− A(m,n, j)| ≤ 1

for all m,m′.

Note that for all i, n ∈ N, we have
∑i+n−1

k=i a[k] =
∑blog2(i+n)c

j=0 A(i, n, j)Fj+2, so for adja-
cent blocks of length n we have

i+2n−1∑
k=i+n

a[k]−
i+n−1∑
k=i

a[k] =

blog2(i+2n)c∑
j=0

(A(i+ n, n, j)− A(i, n, j))Fj+2.

Hence, a[i. . i+ 2n− 1] is an additive square iff

blog2(i+2n)c∑
j=0

(A(i+ n, n, j)− A(i, n, j))Fj+2 = 0,

21

and by above, each A(i+ n, n, j)− A(i, n, j) ∈ {−1, 0, 1}.
The above suggests that we can take advantage of “unnormalized” Fibonacci represen-

tation in our computations. For Σ ⊆ Z and w ∈ Σ∗, we let the unnormalized Fibonacci
representation 〈w〉uF be defined in the same way as 〈w〉F , except over the alphabet Σ.

In order to use our decision procedure, we need two auxiliary DFAs: one that, given
i, n ∈ N (represented in base 2), computes 〈A(i+ n, n,−)− A(i, n,−)〉uF , and another that,
given w ∈ {−1, 0, 1}∗, decides whether 〈w〉uF = 0. The first task can be done by a 6-state
(incomplete) DFA Madd22F that accepts the language

{z ∈ (Σ2
2×{−1, 0, 1})∗ : ∀j(π3(z)[j] = A(〈π1(z)〉2+〈π2(z)〉2 , 〈π2(z)〉2 , j)−A(〈π1(z)〉2 , 〈π2(z)〉2 , j))}.

Here πi denotes projection onto the i’th coordinate. The second task can be done by a
5-state (incomplete) DFA M1uFisZero that accepts the language

{w ∈ {−1, 0, 1}∗ : 〈w〉uF = 0}.

We applied a modified decision procedure to the predicate n ≥ 1 ∧ ∃w(add22F(i, n, w) ∧
1uFisZero(w)) and obtained as output a DFA that accepts nothing, so a avoids additive
squares.

Next, we show that a is the lexicographically least sequence over N∗ of the form S(b)
that avoids additive squares.

Note that for all x,y ∈ N∗, S(x) < S(y) iff x < y in the lexicographic ordering. Thus, we
show that if any entry b[s] with b[s] > 1 is changed to some t ∈ [1,b[s]− 1], then a = S(b)
contains an additive square using only the first occurrence of the change at a[2s − 1]. More
precisely, we show that for all s, t ∈ N with t ∈ [1, Fs+2 − 1], there exist i, n ∈ N with n ≥ 1
and i+ 2n < 2s+1 such that either

2s − 1 ∈ [i, i+ n− 1] and
i+2n−1∑
k=i+n

a[k]−
i+n−1∑
k=i

a[k] + t = 0

or

2s − 1 ∈ [i+ n, i+ 2n− 1] and
i+2n−1∑
k=i+n

a[k]−
i+n−1∑
k=i

a[k]− t = 0.

Setting up for a modified decision procedure, we use the following predicate, which says
“r is a power of 2 and changing a[r− 1] to any smaller number results in an additive square
in the first 2r positions”, and six auxiliary DFAs. Note that all arithmetic and comparisons
are in base 2.

powOf2(r) ∧ ∀t ((t ≥ 1 ∧ t < r ∧ canonFib(t))→ ∃i∃n(n ≥ 1 ∧ i+ 2n < 2r ∧
((i < r ∧ r ≤ i+ n ∧ ∀w (add22F(i, n, w)→ ∀x (bitAdd(t, w, x)→ 2uFisZero(x)))) ∨
(i+ n < r ∧ r ≤ i+ 2n ∧ ∀w (add22F(i, n, w)→ ∀x (bitSub(t, w, x)→ 2uFisZero(x))))))).

22

L(MpowOf2) = {w ∈ Σ∗2 : ∃n(w = (2n)2)}.
L(McanonFib) = {w ∈ Σ∗2 : ∃n(w = (n)F)}.

L(Mbit(Add/Sub)) = {z ∈ (Σ2 × {−1, 0, 1} × {−1, 0, 1, 2})∗ : ∀i (π1(z)[i]± π2(z)[i] = π3(z)[i])}.
L(M2uFisZero) = {w ∈ {−1, 0, 1, 2}∗ : 〈w〉uF = 0}.

We applied a modified decision procedure to the above predicate and auxiliary DFAs and
obtained as output MpowOf2, so a is the lexicographically least sequence over N∗ of the form
S(b) that avoids additive squares.

Remark 20. We explain how to construct automata handling unnormalized representations
with Walnut. Suppose we are given just a normalized adder and the automaton McanonFib

that checks if a representation is canonical (no two consecutive 1’s). Relabel transitions in
the adder from (x, y, z) to (x + y, z), obtaining and NFA, and determinize. Then intersect
with (0, 12)∗. Note that we can split any string in {0, 1}∗ into the bitwise sum of two
canonical Fibonacci representations (e.g., split into even position digits and odd position
digits). Therefore the constructed automaton accepts all of {(nuF , nF) : n ∈ N}, where
the first component represents an unnormalized representation. On the other hand, the
automaton accepts nothing more because, since Fibonacci representation is a positional
system, the bitwise sum of x and y gives us the sum of x and y.

Now we have an automaton (call it M) that compares unnormalized representations with
normalized representations for equality. We can use M and the original adder to construct
an unnormalized adder:

∃x′ ∃y′ ∃z′ M(x, x′) ∧ M(y, y′) ∧ M(z, z′) ∧ A(x′, y′, z′).

Now we play the same game with the unnormalized adder. That is, replace (x, y, z) with
(x + y, z) to get an automaton that compares unnormalized representations over {0, 1, 2}
to an unnormalized representations over {0, 1} (which can then be compared to normalized
representations). Similarly, if we relabel (x, y, z) to (x − z, y) then the first input is over
{−1, 0, 1}, and the automaton compares it to a representation over {0, 1}. Repeat until the
unnormalized representations cover the desired range of inputs.

7 Comments on our implementation

Our software Walnut is available for free download at
https://www.cs.uwaterloo.ca/~shallit/papers.html .

To run the examples in this paper, the reader will have to define the automata for R and
V in the Word Automata Library directory. The appropriate files can be downloaded from
the URL above. For more information about Walnut, see [21].

We used the command
java -Xmx11000M -d64 Main.prover

to run the examples in this paper.
For more details about the implementation, see [22].

23

8 Acknowledgments

We thank Narad Rampersad and Michel Rigo for useful suggestions. We also thank the
referees of this and an earlier version for helpful comments that greatly improved the paper.
This research was supported in part by a grant from NSERC, RGPIN-105829-2013.

References

[1] B. Bischoff, J. D. Currie, and D. Nowotka. Unary patterns with involution. Internat.
J. Found. Comp. Sci. 23 (2012), 1641–1652.

[2] B. Bischoff and D. Nowotka. Pattern avoidability with involution. In WORDS 2011,
pp. 65–70, 2011. Available at http://rvg.web.cse.unsw.edu.au/eptcs/content.

cgi?WORDS2011.

[3] A. Blondin Massé, S. Brlek, A. Garon, and S. Labbé. Two infinite families of polyomi-
noes that tile the plane by translation in two distinct ways. Theoret. Comput. Sci. 412
(2011), 4778–4786.

[4] A. Blondin Massé, S. Brlek, S. Labbé, and M. Mendès France. Fibonacci snowflakes.
Ann. Sci. Math. Québec 35 (2011), 141–152.

[5] A. Blondin Massé, S. Brlek, S. Labbé, and M. Mendès France. Complexity of the
Fibonacci snowflake. Fractals 20 (2012), 257–260.

[6] T. C. Brown and A. R. Freedman. Arithmetic progressions in lacunary sets. Rocky
Mountain J. Math. 17 (1987), 587–596.

[7] L. Carlitz. Fibonacci representations. Fibonacci Quart. 6 (1968), 193–220.

[8] J. Cassaigne, J. Currie, L. Schaeffer, and J. Shallit. Avoiding three consecutive blocks
of the same size and same sum. J. Assoc. Comput. Mach. 61(2) (2014), Paper 10.

[9] J. D. Currie. Pattern avoidance with involution. Available at https://arxiv.org/

abs/1105.2849, 2011.

[10] J. D. Currie and N. Rampersad. Growth rate of binary words avoiding xxxR. Theoret.
Comput. Sci. 609 (2016), 456–468.

[11] C. F. Du, H. Mousavi, L. Schaeffer, and J. Shallit. Decision algorithms for Fibonacci-
automatic words, III: Enumeration and abelian properties. To appear, Int. J. Found.
Comput. Sci. Preliminary version available at https://cs.uwaterloo.ca/~shallit/

Papers/part3.pdf, 2015.

[12] G. Fici and L. Q. Zamboni. On the least number of palindromes contained in an infinite
word. Theoret. Comput. Sci. 481 (2013), 1–8.

24

[13] A. S. Fraenkel. Systems of numeration. Amer. Math. Monthly 92 (1985), 105–114.

[14] A. R. Freedman and T. C. Brown. Sequences on sets of four numbers. INTEGERS:
Elect. J. of Combin. Number Theory 16 (2016), #A33 (electronic).

[15] M. Guay-Paquet and J. Shallit. Avoiding squares and overlaps over the natural numbers.
Discrete Math. 309 (2009), 6245–6254.

[16] L. Halbeisen and N. Hungerbühler. An application of Van der Waerden’s theorem in
additive number theory. INTEGERS: Elect. J. of Combin. Number Theory 0 (2000),
#A7. http://www.integers-ejcnt.org/vol0.html.

[17] C. Holton and L. Q. Zamboni. Directed graphs and substitutions. Theory Comput.
Systems 34 (2001), 545–564.

[18] C. G. Lekkerkerker. Voorstelling van natuurlijke getallen door een som van getallen van
Fibonacci. Simon Stevin 29 (1952), 190–195.

[19] R. Mercaş. A note on the avoidability of binary patterns with variables and reversals.
Preprint, available at https://arxiv.org/pdf/1508.04571.pdf, 2015.

[20] A. Monnerot-Dumaine. The Fibonacci word fractal. Published electronically at http:

//hal.archives-ouvertes.fr/hal-00367972/fr/, 2009.

[21] H. Mousavi. Automatic theorem proving in Walnut. Preprint, available at https:

//arxiv.org/abs/1603.06017, 2016.

[22] H. Mousavi, L. Schaeffer, and J. Shallit. Decision algorithms for Fibonacci-automatic
words, I: Basic results. RAIRO Inform. Théor. App. 50 (2016), 39–66.

[23] A. Ostrowski. Bemerkungen zur Theorie der Diophantischen Approximationen. Abh.
Math. Sem. Hamburg 1 (1922), 77–98,250–251. Reprinted in Collected Mathematical
Papers, Vol. 3, pp. 57–80.

[24] G. Pirillo and S. Varricchio. On uniformly repetitive semigroups. Semigroup Forum 49
(1994), 125–129.

[25] N. Rampersad. Infinite sequences and pattern avoidance. Master’s thesis, University of
Waterloo, 2004. Available at https://cs.uwaterloo.ca/~shallit/narad_masters.

pdf.

[26] N. Rampersad and J. Shallit. Words avoiding reversed subwords. J. Combin. Math.
Combin. Comput. 54 (2005), 157–164.

[27] M. Rao. On some generalizations of abelian power avoidability. Theoret. Comput. Sci.
601 (2015), 39–46.

[28] G. Rote. Sequences with subword complexity 2n. J. Number Theory 46 (1994), 196–213.

25

[29] J. O. Shallit. A generalization of automatic sequences. Theoret. Comput. Sci. 61 (1988),
1–16.

[30] E. Zeckendorf. Représentation des nombres naturels par une somme de nombres de
Fibonacci ou de nombres de Lucas. Bull. Soc. Roy. Liège 41 (1972), 179–182.

26

