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Abstract. We associate a finite directed graph with each equivalence class

of words in F2 under AutF2, and we completely classify these graphs, giving
a structural classification of the automorphic conjugacy classes of F2. This

classification refines work of Khan and proves a conjecture of Myasnikov and

Shpilrain on the number of minimal words in an automorphic conjugacy class
whose minimal words have length n, which in turn implies a sharp upper

bound on the running time of Whitehead’s algorithm for determining whether

two words in F2 are automorphic conjugates.

1. Introduction

We begin with a few standard definitions. Let F2 = 〈a, b〉 be the free group on
two generators a and b. The length of w ∈ F2 is denoted by |w|. A word w ∈ F2 is
minimal if |φ(w)| ≥ |w| for all φ ∈ AutF2.

Two elements w and v in F2 are automorphic conjugates if there is an automor-
phism φ ∈ AutF2 such that φ(w) = v. We write w ∼ v if w and v are automorphic
conjugates. Equivalence classes under ∼, which we refer to as automorphic conju-
gacy classes, are the main object of study in this paper.

An automorphic conjugacy class W supports a natural graph structure in which
the vertices are the words in W and a directed edge is drawn from w to v for
each automorphism φ such that φ(w) = v. Here we will be interested in the
subgraph consisting of minimal words, say of length n, and in particular we will
define (in Section 2) a quotient Γ(W ) of this subgraph obtained by dividing by n
inner automorphisms and 8 permutations.

The size of Γ(W ) has implications for the running time of a standard algorithm
for determining whether two words in F2 are automorphic conjugates. To bound
the time complexity of this algorithm, Myasnikov and Shpilrain [5] studied the
number of minimal words in an automorphic conjugacy class W . They showed that
if w ∈ F2 is a minimal word of length n, then the number of minimal words in its
automorphic conjugacy class is bounded above by a polynomial in n. Further, they
conjectured that 8n2−40n gives a sharp bound for n ≥ 9. In terms of Γ(W ), where
we have divided by 8n automorphisms, this is equivalent to the statement that
|V (Γ(W ))| ≤ n− 5 for n ≥ 9. Khan [3] showed that this conjectured bound holds
for sufficiently large classes. His approach was to identify a number of subgraphs
that Γ(W ) avoids and use these subgraphs to bound the number of vertices.

Theorem (Khan). If W is an automorphic conjugacy class of size |V (Γ(W ))| ≥
4373 whose minimal words have length n ≥ 10, then |V (Γ(W ))| ≤ n− 5.
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In this paper we take a direct approach to analyzing the structure of Γ(W ). We
are able to recast Khan’s results with shorter proofs and additional information
sufficient to prove the conjecture of Myasnikov and Shpilrain.

Theorem 1.1. If W is an automorphic conjugacy class whose minimal words have
length n ≥ 9, then |V (Γ(W ))| ≤ n− 5.

Myasnikov and Shpilrain [5] perceived the possibility of a sharp polynomial
bound as quite surprising. We show in this paper that the structure of automor-
phic conjugacy classes is quite restricted, perhaps much more so than previously
suspected, which accounts for a simple bound.

Our work builds on that of a previous paper [1] in which we identified certain
words in F2 as root words. We define these words below, following Theorem 1.6. The
property of being a root word is respected by automorphic conjugacy (Theorem 1.8
below), so each automorphic conjugacy class W can be said to either be a root class
or a non-root class. For graphs of sufficiently large automorphic conjugacy classes,
Khan [3] also identified a dichotomy — either the number of vertices is bounded
by some absolute constant or the graph has at most n− 5 vertices and simple edge
structure. We show in this paper that the former correspond to root classes and
the latter to non-root classes.

Both Khan’s approach and ours are founded on a theorem of Whitehead [6, 7]
which provides a finite set of generators for AutF2. Before recalling this theorem
we introduce a bit of notation. Let L2 = {a, b, a−1, b−1}. For x ∈ L2, denote
x = x−1. We identify each element w ∈ F2 with its word on the alphabet L2 in
which no pair of adjacent letters are inverses of each other.

A Type I automorphism or a permutation is an automorphism which permutes
L2. There are 8 permutations.

Type II automorphisms are defined as follows. Let x ∈ L2 and A ⊂ L2 \ {x, x}.
Define a map φ : L2 → F2 by

φ(y) = xβ(y∈A) y xβ(y∈A),

where β(true) = 1 and β(false) = 0. Since φ(y)−1 = φ(y) for all y ∈ L2, this
map extends to an automorphism. We write φ = (A, x) and call φ a Type II
automorphism. For example, the automorphism φ = ({a}, b) maps a 7→ ab and a 7→
ba and leaves b, b fixed. This notation for Type II automorphisms was introduced
by Higgins and Lyndon [2]; see also the standard book of Lyndon and Schupp [4,
page 31].

Theorem (Whitehead). If w, v ∈ F2 such that w ∼ v and v is minimal, then there
exists a sequence φ1, φ2, . . . , φm of Type I and Type II automorphisms such that

• φm · · ·φ2φ1(w) = v and
• for 0 ≤ k ≤ m − 1, |φk+1φk · · ·φ2φ1(w)| ≤ |φk · · ·φ2φ1(w)|, with strict

inequality unless φk · · ·φ2φ1(w) is minimal.

To determine whether a word w is minimal, by Whitehead’s theorem it suffices
to apply each Type II automorphism to w. Then w is minimal if and only if
|φ(w)| ≥ |w| for each Type II automorphism φ.

In fact we do not need to check all Type II automorphisms to determine mini-
mality. For example, ({}, x) is the identity automorphism, so we may require that
no automorphism φi in Whitehead’s theorem is ({}, x).
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Additionally, notice that ({y, y}, x) is an inner automorphism, since it conjugates
y by x and also (trivially) conjugates x by x. We view inner automorphisms as
“cosmetic” automorphisms, and we will usually dispense with them by dividing
AutF2 by its normal subgroup InnF2. For clarity, however, our notation will
indicate when we have omitted an inner automorphism. We write w ≡ v if φ(w) = v
for some inner automorphism φ. Equivalence classes under≡ are called cyclic words.
Let C2 be the set of words w = x1 · · ·xn ∈ F2 such that xn 6= x1. Words in C2

are representatives of cyclic words. For the remainder of the paper, all words are
elements of C2. Since F2 \C2 consists entirely of words which are not minimal, we
do not lose any structural information regarding minimal words by moving from F2

to C2.
Since an inner automorphism does not decrease the length of any word in C2,

by Whitehead’s theorem we need not consider them when determining the min-
imality of a word in C2. Therefore the primary automorphisms of interest are
automorphisms φ = (A, x) where |A| = 1. We call such an automorphism a one-
letter automorphism. For y /∈ {x, x}, the one-letter automorphism ({y}, x) maps
x 7→ x, x 7→ x, y 7→ yx, and y 7→ xy. The inverse of φ = ({y}, x) is the one-letter
automorphism φ−1 = ({y}, x).

One-letter automorphisms do not commute with permutations in general, but
we have the following identity, which we will use a number of times.

Lemma 1.2. Let y /∈ {x, x}, let φ = ({y}, x) be a one-letter automorphism, and
let π ∈ AutF2 be a permutation. Then πφ = ({π(y)}, π(x))π.

Proof. One checks that both sides map x 7→ π(x) and y 7→ π(y)π(x). �

We mention that a consequence of Lemma 1.2 is that one can pull any permu-
tations in the product φm · · ·φ2φ1 to the left. Therefore in Whitehead’s theorem
one may assume that φ1, φ2, . . . , φm−1 are Type II automorphisms and that φm is
a permutation.

There are 8 one-letter automorphisms; they are given by ({y}, x) as x and y
run over L2 subject to y /∈ {x, x}. Each one-letter automorphism ({y}, x) can be
written as the product

(1.1) ({y}, x) = ({y, y}, x)({y}, x)

of an inner automorphism and another one-letter automorphism. That is, we have
({y}, x)(w) ≡ ({y}, x)(w) for all w ∈ C2. Therefore, there are only four distinct
one-letter automorphisms modulo InnF2. The four principal automorphisms are
({a}, b), ({a}, b), ({b}, a), and ({b}, a); they are distinct modulo InnF2. We have
shown the following corollary of Whitehead’s theorem.

Corollary 1.3. Let w ∈ C2. Then w is minimal if and only if none of the principal
automorphisms decrease the length of w.

Example. Let w = aa. Since the lengths of ({a}, b)(w) = abab, ({a}, b)(w) = abab,
({b}, a)(w) = aa, and ({b}, a)(w) = aa are at least 2, w is minimal.

By counting two-letter subwords of w we can determine whether the length of
({y}, x)(w) is greater than, less than, or equal to |w|. Hence the minimality of w can
be expressed in terms of these subword counts; this is the content of Theorem 1.6
below. Our notation for counting subwords is as follows. If w = x1 · · ·xn and u
are nonempty words in C2 such that k = |u| ≤ |w| = n, let (u)w denote the total
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number of (possibly overlapping) occurrences of the (contiguous) subwords u and
u−1 in x1 · · ·xnx1 · · ·xk−1. If |u| > |w|, let (u)w = 0. Essentially we are considering
w to be a cyclic word; if w ≡ w′ then (u)w = (u)w′ .

Example. Let w = aabbababa; the length-2 subword counts are (aa)w = 2, (bb)w =
1, (ab)w = 1 = (ba)w, and (ab)w = 2 = (ba)w.

One can show that, in general, (xy)w = (yx)w for w ∈ C2 and x, y ∈ L2.
In the remainder of this section we give some facts from our previous paper [1]

that we will use. We include a proof of the first lemma to indicate the flavor of the
proofs.

Lemma 1.4. Let w ∈ C2, and let φ = ({y}, x) with y /∈ {x, x}. Then

(yy)φ(w) = (yxy)w,

(xx)φ(w) = (yxy)w + (yxx)w + (xxy)w + (xxx)w.

Proof. The only way that yy can occur in φ(w) is as the image of yxy in w. Similarly,
yy occurs in φ(w) only where yxy occurs in w; this yields the first equality. The
second equality follows from the observation that xx is introduced in φ(w) where
yxy and yxx occur in w, and xx in w is preserved under φ except when followed
by y; similarly for its inverse xx. �

An automorphism φ ∈ AutF2 is level on w ∈ C2 if |w| = |v| for some v ∈ C2

such that v ≡ φ(w). In other words, φ is level on w if the lengths of w and φ(w)
as cyclic words are equal. For example, ({b}, a) is level on abab but is not level on
abab.

The following lemma is a rephrasing of the statement that a one-letter auto-
morphism is level on w precisely when the number of (cyclic) letter cancellations
it causes is equal to the number of additions. (We must exclude words of length
1; since cyclically consecutive as in w = a are not actually distinct, there is an
addition under ({a}, b) that is not captured by counting occurrences of aa.)

Lemma 1.5. Let w ∈ C2 such that |w| ≥ 2, and let y /∈ {x, x}. Then the automor-
phism ({y}, x) is level on w if and only if (yx)w = (yx)w + (yy)w.

The next theorem follows easily from Corollary 1.3 and Lemma 1.5.

Theorem 1.6. A word w ∈ C2 is minimal if and only if

|(ab)w − (ab)w| ≤ min((aa)w, (bb)w).

Root words are words satisfying the boundary case of this inequality.

Definition. A word w ∈ C2 is a root word if

|(ab)w − (ab)w| = (aa)w = (bb)w.

This definition is different than, but equivalent to, the definition used in our
previous paper [1, Theorem 7].

Examples of root words include abab, aabb, and abab; these words belong to
classes 4.2 and 4.3 in Appendix A, which lists representatives of all classes contain-
ing a word of length n ≤ 9.

Theorem 1.7. If w is a root word, then |w| is divisible by 4.
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An automorphic conjugacy class W is a root class if it contains a root word and
a non-root class if it does not. Theorem 1.8 states that all minimal words in a root
class are root words.

Theorem 1.8. If w is a root word, w ∼ v, and |w| = |v|, then v is a root word.

A word w ∈ C2 is alternating if (aa)w = 0 = (bb)w. For example, abab and abab
are alternating.

Theorem 1.9. Let w ∈ C2. The following are equivalent.

• w is an alternating minimal word.
• w is an alternating root word.
• The four principal one-letter automorphisms are level on w.

The outline of the paper is as follows. The following section contains the def-
inition of the graph Γ(W ) and the main theorems of the paper. These theorems
are proved in Sections 3 and 4. We conclude in Section 5 with conjectures on the
number of automorphic conjugacy classes whose minimal words have length n.

2. The graph Γ(W )

In this section we define Γ(W ), a directed graph associated with an automorphic
conjugacy class W . We then state Theorems 2.1–2.3, which classify these graphs.

The basic idea is to consider a graph where the vertices are minimal words in
W and an edge from w to v represents a one-letter automorphism that maps w to
v. Note that there are finitely many minimal words in W , since there are finitely
many words of length n. Therefore the vertex set is finite. To reduce the number of
vertices, we only select distinct minimal words up to “cosmetic” similarity. Namely,
if two minimal words are mapped to each other by an inner automorphism and a
permutation, then we consider them to be representatives of the same vertex.

More formally, let J be the subgroup of automorphisms of F2 generated by inner
automorphisms and permutations. Write w ∼J v if φ(w) = v for some φ ∈ J .
In particular, if w ≡ v then w ∼J v. Define [w] to be the equivalence class of
w under ∼J , and let the vertices of Γ(W ) be the equivalence classes of minimal
words in W under ∼J . Note that the vertices in the graphs considered by Khan [3]
are equivalence classes modulo inner automorphisms only; hence his graph for an
automorphic conjugacy class W has up to 8 times as many vertices as Γ(W ) (fewer
if there are symmetries in a word).

We now describe the edges of Γ(W ). Since J is not a normal subgroup of AutF2,
we cannot define φ([w]) to be [φ(w)], because the map u 7→ [φ(u)] is not invariant
on the minimal words in [w].

Example. Consider w = aa and v = bb ∈ [w]. Let φ = ({b}, a). We have
φ(w) = w = aa and φ(v) = baba, and it is clear that [aa] 6= [baba].

Instead, if φ is a one-letter automorphism, let [φ] be the equivalence class of φ
modulo InnF2. Let w, v ∈ C2 be minimal words such that w ∼ v. We say that [w]
is connected to [v] by [φ] if φ(w) ∈ [v]. We draw one directed edge in Γ(W ) from
[w] to [v] for each equivalence class [φ] of one-letter automorphisms such that [w]
is connected to [v] by [φ].

To show that Γ(W ) is well-defined, we must show that the number of edges from
[w] to [v] does not depend on the representatives. First we show that the property
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of two vertices being connected does not depend on the representatives. Indeed,
suppose that [w] is connected to [v] by [φ], and let w′ ∈ [w] and v′ ∈ [v]. Then w′ ≡
π(w) for some permutation π; letting φ′ = πφπ−1 gives φ′(w′) ≡ πφ(w) ∈ [v] = [v′].
By Lemma 1.2, φ′ is a one-letter automorphism, so [w′] is connected to [v′] by [φ′].
Note that in general [φ′] 6= [φ]. However, the map φ 7→ πφπ−1 is a bijection on the
set of one-letter automorphisms. Moreover, one-letter automorphisms which are
equivalent modulo InnF2 have images under this map that are equivalent modulo
InnF2; this can be seen from Lemma 1.2. Therefore the number of edges from
[w] to [v] is independent of the representatives chosen. Hence the graph Γ(W ) is
well-defined.

By Whitehead’s theorem, Γ(W ) is connected. We see that, by definition, the
outdegree of each vertex in Γ(W ) is at most 4. Note that Γ(W ) can have loops and
multiple edges.

Example. Consider the automorphic conjugacy class W containing the minimal
word aabb. This class is class 4.3 in Appendix A. The images of aabb under the
principal one-letter automorphisms are

({a}, b)(aabb) = ababbb

({a}, b)(aabb) = abab

({b}, a)(aabb) = aababa

({b}, a)(aabb) ≡ abab.
The first and third images are not minimal, so they are not represented in Γ(W ).
The second and fourth images are elements of [abab], which is distinct from the
vertex [aabb]. So let us compute the images of abab under the principal automor-
phisms:

({a}, b)(abab) = abba

({a}, b)(abab) = aabb

({b}, a)(abab) = abab (a loop)

({b}, a)(abab) = abab (a loop).

The first two images are elements of [aabb], so |V (Γ(W ))| = 2 and Γ(W ) is

[aabb]
++.. [abab]kk nn

		

GG
.

The words listed in Appendix A for each automorphic conjugacy class are repre-
sentatives of the vertices of Γ(W ). They are the minimal words in W that appear
first lexicographically (with the order a < b < a < b on L2) among their images
under inner automorphisms and permutations. From the listed representatives, one
can compute Γ(W ) by drawing an edge from [w] to [v] for each principal automor-
phism φ such that φ(w) ∼J v.

If there is an edge in Γ(W ) from [w] to [v] then there is an edge from [v] to [w],
since if φ(w) = v then φ−1(v) = w. Therefore we say that [w] and [v] are neighbors
if there is an edge from [w] to [v] (and from [v] to [w]) without distinguishing
“out-neighbors” from “in-neighbors”.

Note, however, that the number of edges from [w] to [v] is not necessarily equal
to the number of edges from [v] to [w], as the following example illustrates.
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Example. Consider automorphic conjugacy class 6.10. The minimal words aaaabb,
aaabab, and aabaab are vertex representatives for Γ(W ). Neither the automorphism
({a}, b) nor its inverse are level on any of these three words. Let φ = ({b}, a). We
have φ(aaaabb) ≡ aaabab and φ(aaabab) ≡ aabaab. Note that φ−1 is not level on
aaaabb, so [aaaabb] has outdegree 1. On aabaab, φ has the effect of φ(aabaab) ≡
abaaab ≡ π(aaabab), where π is the permutation which maps a 7→ a and b 7→ b,
so we have an edge πφ from aabaab to aaabab. Therefore, Γ(W ) with its vertices
labeled is

aaaabb

φ
,,
aaabab

φ−1

ll

φ
,,
aabaab

φ−1

ll πφoo .

We suppress brackets here to emphasize that we have fixed a representative of each
vertex and that the edge labels are acting on these representatives; in other words,
there are no hidden permutations. As will emerge from the proof of Lemma 3.6,
one can think of Γ(W ) as the path

aaaabb

φ ,,
aaabab

φ−1

ll

φ ,,
aabaab

φ−1

ll

φ ,,
abaaab

φ−1

ll

φ ,,
baaaab

φ−1

ll

folded in half to account for π(aaaabb) ≡ baaaab and π(aaabab) ≡ abaaab. The
symmetry in the center word aabaab allows π(aabaab) ≡ aabaab. Only three of the
four edges between aabaab and its neighbors survive the folding, since π is applied
before φ−1 in φ−1π(aaabab) ≡ aabaab, so this automorphism does not contribute
an edge to Γ(W ).

It is also possible for a vertex to have a single loop due to a symmetry in a word.

Example. If w = aababaabb then the automorphism ({b}, a) maps w to the word
({b}, a)(w) = aabbaabab. Let π map a 7→ a, b 7→ b; since π({b}, a)(w) ≡ w, the
vertex [w] has a loop. However, there is only one loop on [w], since the other three
principal one-letter automorphisms are not level on w. This is class 9.43.

The following are our main theorems. Theorem 2.1 is proved in Section 3, and
Section 4 contains the proofs of Theorems 2.2 and 2.3.

Theorem 2.1. Let W be a non-root class. Then Γ(W ) has one of the following
forms.

(P1) a simple path

• (( •hh
(( •hh · · · • (( •hh

(( •hh

possibly in its degenerate form

•

(P2) a looped path

• (( •hh
(( •hh · · · • (( •hh

(( •hh dd

possibly in its degenerate form

• dd
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(P3) a double-edged path

• (( •hh
(( •hh · · · • (( •hh

(( •hh oo

possibly in its degenerate form

• qqQQ

We have referred to the double-looped vertex as a degenerate double-edged path.
This is merely for purposes of convenience; it is not the case that the proof of
Theorem 2.1 will illustrate a sense in which they are related. Alternatively, we could
have given the double-looped vertex its own label and required that double-edged
paths have at least two vertices. However, then we would also have separated the
unlooped vertex and the single-looped vertex from their families, since our proofs
in Section 3 treat them separately as well.

Theorem 2.2. Let W be a root class with no alternating minimal word. Then
Γ(W ) is one of the following graphs.

(R1)

• qqQQ
(R2)

• // (( •hh dd

(R3)

•

vv ��
• **

66

•jj

VV

Theorem 2.3. Let W be a root class containing an alternating minimal word. Then
there is exactly one distinct alternating minimal word modulo J in W ; denote this
word by w0. Then Γ(W ) is one of the following graphs.

(R4)

[w0]77
��
ww

SS

(R5)

•
**-- [w0]ggll ww
SS

(R6)

•

��

��
[w0]

XX aa

vv}}•

KK

88
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(R7)
•

��

��

•

��

xx
[w0]

XX 66

��vv•

KK

88

•

KK

YY

Moreover, each of the ten graph types in Theorems 2.1–2.3 occurs. See Appen-
dix A for examples. Appendix B lists the number of automorphic conjugacy classes
of each graph type for minimal words of length n ≤ 20. Since types (P1)–(P3)
come in different sizes, Appendix C lists the number of paths of each size. Root
classes W , on the other hand, have bounded size |V (Γ(W ))| ∈ {1, 2, 3, 5}.

From this classification it follows that, with the exception of the double-looped
vertex, one can infer from Γ(W ) whether W is a root class or a non-root class.
Furthermore, if W is a root class then one can infer from Γ(W ) whether W contains
an alternating minimal word or not.

Before embarking on the proofs, we mention a distinguished root word.

Example. Let w0 = (abab)n. The image of w0 under ({a}, b) is

({a}, b)(w0) = ((ab)b(ba)b)n = (abab)n = w0.

The other three principal automorphisms map w0 either to (abab)n or (abab)n, so
Γ(W ) is (R4). In fact every class of type (R4) contains (abab)n for some n ≥ 0, so
there is only one such class for each multiple of 4. This can be seen as follows. If w0

is an alternating minimal word of length 4n whose class W has size |V (Γ(W ))| = 1,
then for each one-letter automorphism φ = ({y}, x) the word φ(w0) lies in [w0]
and is therefore alternating. By Lemma 1.4 we have 0 = (yy)φ(w0) = (yxy)w0 ,
which means that no letter y occurs two letters away from itself. It follows that
w0 ≡ σ((abab)n) for some permutation σ.

The following lemma is key to the proofs of Theorems 2.1–2.3. Under the con-
dition that w is level under a one-letter automorphism, it provides conditions for
w to be level under the other principal one-letter automorphisms.

Lemma 2.4. Suppose w ∈ C2 such that ({y}, x) is level on w. Then

(i) ({y}, x) is level on w if and only if (yy)w = 0,
(ii) ({x}, y) is level on w if and only if w is a root word, and
(iii) ({x}, y) is level on w if and only if w is an alternating root word.

Proof. Since ({y}, x) is level on w, we have

(2.1) (yx)w = (yx)w + (yy)w

by Lemma 1.5. We use this equation frequently in the following.
By Lemma 1.5, ({y}, x) being level on w is equivalent to (yx)w = (yx)w +(yy)w.

Adding this equation to Equation (2.1) shows that it is equivalent to (yy)w = 0.
This proves (i).

By Lemma 1.5, ({x}, y) being level on w is equivalent to (xy)w = (xy)w+(xx)w,
which is equivalent to (yx)w = (yx)w+(xx)w. Subtracting this from Equation (2.1)
shows that it is equivalent to (xx)w = (yy)w, which is equivalent to w being a root
word since we also have (yx)w−(yx)w = (yy)w from Equation (2.1). This proves (ii).
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Again by Lemma 1.5, ({x}, y) being level on w is equivalent to (xy)w = (xy)w +
(xx)w, which is equivalent to (yx)w = (yx)w+(xx)w. Adding this to Equation (2.1)
shows that it is equivalent to 0 = (xx)w+(yy)w, which is equivalent to 0 = (xx)w =
(yy)w = (yx)w − (yx)w, which is equivalent to w being an alternating root word,
giving (iii). �

Lemma 2.4 already provides enough information to restrict the outdegrees of
root word vertices and non-root word vertices.

Corollary 2.5. If w ∈ C2 is a minimal word that is not a root word, then
outdegree([w]) ∈ {0, 1, 2}. If w ∈ C2 is a root word, then outdegree([w]) ∈ {2, 4}.

Proof. We have already established that by definition of Γ(W ) the outdegree of
[w] is at most 4. Suppose toward a contradiction that the outdegree of [w] is 3.
Let ({y}, x) be an automorphism that is level on w. Since the outdegree of each
alternating root word is 4, w is not an alternating root word. By Lemma 2.4, the
automorphism ({x}, y) is therefore not level on w, so the other two automorphisms
({y}, x) and ({x}, y) are level on w. By Lemma 2.4, (yy)w = 0 and w is a root
word. Therefore (xx)w = 0, but this implies that w is alternating and hence an
alternating root word, which is a contradiction. Hence the outdegree of [w] is not
3.

By Lemma 2.4, if w is not a root word then additionally the outdegree is not 4,
and if w is a root word then additionally the outdegree is not 1.

It remains to show that if w is a root word then the outdegree of [w] is at least
1. By definition, w is a root word if and only if |(ab)w − (ab)w| = (aa)w = (bb)w,
in which case (ab)w − (ab)w = (aa)w (and ({a}, b) is level on w by Lemma 1.5) or
(ab)w − (ab)w = (aa)w (and ({a}, b) is level on w). �

3. Non-root classes

In this section we prove Theorem 2.1 and Theorem 1.1. For the duration of this
section, fix x, y ∈ L2 such that y /∈ {x, x}. We say that a word w is semi-alternating
if (yy)w = 0. We split the proof of Theorem 2.1 into two cases depending on whether
the automorphic conjugacy class contains a semi-alternating minimal word.

Lemma 3.1. Let W be a non-root class that contains no semi-alternating minimal
word. Then Γ(W ) is one of the following graphs.

• a (P1) path on two vertices
• a degenerate (P1) path (a single vertex with no edges)
• a degenerate (P2) path (a single vertex with one loop)

Proof. By Lemma 2.4, every vertex in Γ(W ) has outdegree at most 1. On the other
hand, if there is an edge [w] → [v] then there is an edge [v] → [w]. Since Γ(W ) is
connected, it follows that Γ(W ) contains at most 2 vertices. If there are 2 vertices,
then Γ(W ) is a simple path on 2 vertices. If there is a single vertex, it can have
either one loop or no loops. �

Each of the three possible outcomes in Lemma 3.1 occurs. One can find examples
among words of length 9.

For w ∈ C2, define mx(w) = min{i ≥ 0 : (yxiy)w ≥ 1}. Similarly, define
mx(w) = min{i ≥ 0 : (yxiy)w ≥ 1}. We adopt the usual convention that min∅ =
∞. Therefore if (yxiy)w = 0 for all i ≥ 0 then mx(w) = ∞, for example. The
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quantity mx(w) is a measure of the “semi-alternatingness” of w. If mx(w) = 0 then
w is not semi-alternating. If mx(w) ≥ 1 then w is semi-alternating and remains so
under mx(w)− 1 applications of ({y}, x).

Lemma 3.2. If w is a minimal word, then 1 ≤ mx(w) < ∞ if and only if 1 ≤
mx(w) <∞.

Proof. Consider the one-letter automorphism φ = ({y}, x), which maps y 7→ yx.
This automorphism does not change the distance between y and y separated by xi

or xi, since for all i ≥ 0

φ(yxiy) = yxiy

φ(yxiy) = xyxiyx

and analogously for the inverses of these two words. On the other hand, φ does
change the distance between a pair of ys or a pair of ys separated by xi or xi, since
for all i ∈ Z

(3.1) φ(yxiy) = yxi+1yx

(and analogously for the inverse yx−iy).
Suppose 1 ≤ mx(w) < ∞. Since w is minimal, the image of w under φ has

length at least |w|. Since φ decreases the distance between the two ys in yxmx(w)y
(or the two ys in yxmx(w)y) in w, it follows that φ increases the distance between
another pair of ys or ys in w. This can only happen for yxjy or its inverse for some
j ≥ 0, and since (yy)w = 0 we have 1 ≤ mx(w) <∞.

A symmetric argument with the automorphism ({y}, x) shows that if 1 ≤ mx(w) <
∞ then 1 ≤ mx(w) <∞. �

Since mx(w) = 0 if and only if mx(w) = 0, it follows from Lemma 3.2 that
mx(w) =∞ if and only if mx(w) =∞.

Having proven Lemma 3.1, it remains to prove Theorem 2.1 for classes containing
a semi-alternating minimal word. Lemmas 3.4 and 3.6 address the cases mx(w) =
∞ and 1 ≤ mx(w) < ∞ for the semi-alternating word w. The following lemma
shows that a vertex containing a semi-alternating word has outdegree at least 2.

Lemma 3.3. Let w be a semi-alternating minimal word of length |w| ≥ 2. Then
({y}, x) and ({y}, x) are level on w.

Proof. Toward a contradiction, assume that neither ({y}, x) nor ({y}, x) is level
on w. If φ = ({y}, x) increases the length of w, then φ causes more additions
than cancellations in w; as in Lemma 1.5, this implies (yx)w < (yx)w + (yy)w.
Symmetrically, |({y}, x)(w)| > |w| implies (yx)w < (yx)w + (yy)w. It follows that
−(yy)w < (yx)w− (yx)w < (yy)w, so (yy)w 6= 0, contradicting the assumption that
w is semi-alternating. Therefore ({y}, x) or ({y}, x) is level on w. By Lemma 2.4,
both are. �

Lemma 3.4. Let W be a non-root class containing a minimal word w such that
mx(w) =∞. Then Γ(W ) is a degenerate (P3) path (a single vertex with two loops).

Proof. By Lemma 3.3, φ = ({y}, x) and φ−1 = ({y}, x) are level on w. By
Lemma 2.4, φ and φ−1 are the only one-letter automorphisms that are level on
w. Since mx(w) = ∞ and mx(w) = ∞, w consists of overlapping subwords of the
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form yexiy−e for e ∈ {1,−1} and i ∈ Z \ {0}. Since the distance between ye and
y−e is fixed by φ and by φ−1, w is fixed by φ and by φ−1, so [w] has two loops.

Suppose that ({x}, y) is level on w. By Lemma 1.5, (xx)w = (xy)w − (xy)w =
(xy)w − (yx)w. This difference is equal to 0 since mx(w) = ∞ implies that the
subwords xy and yx occur in pairs in w and similarly the subwords yx and xy
occur in pairs. But (xx)w = 0 implies that w is an alternating minimal word and
hence a root word by Theorem 1.9, contradicting one of our assumptions. Therefore
({x}, y) is not level on w. Similarly, ({x}, y) = ({x}, y)−1 is not level on w. �

We use the following result in the proof of Lemma 3.6.

Lemma 3.5. Let w be a minimal word such that 1 ≤ mx(w) <∞ and φ = ({y}, x)
is level on w. Then φ is level on φ(w) if and only if 2 ≤ mx(w) <∞.

Proof. Since φ−1 is level on φ(w), we see by Lemma 2.4 that φ is level on φ(w) if
and only if (yy)φ(w) = 0. By Lemma 1.4, (yy)φ(w) = (yxy)w. Since 1 ≤ mx(w) <∞
by assumption, (yxy)w = 0 if and only if 2 ≤ mx(w) <∞. �

Lemma 3.6. Let W be a non-root class containing a minimal word w such that
1 ≤ mx(w) <∞. Then Γ(W ) is a (P1), (P2), or (P3) path with at least 2 vertices.

Proof. Lemma 3.3 and Lemma 2.4 imply that φ = ({y}, x) and its inverse are the
only one-letter automorphisms that are level on w. Recall that J is the subgroup
of AutF2 generated by inner automorphisms and permutations. Let

W ′ = {φj(w) : −mx(w) ≤ j ≤ mx(w)}.

Claim: W ′ ⊂W , and for each minimal v ∈W the set W ′ contains a minimal word
equivalent to v modulo J . Note that in W ′ we may have pairs of words that are
equivalent modulo J .

Toward this claim, we first show that for −mx(w) ≤ j ≤ mx(w) the word
φj(w) is minimal, and for −mx(w) < j < mx(w) we also show that φj(w) is
semi-alternating. We work by induction on j. For j = 0, we have by hypothesis
that w is minimal and semi-alternating. Now, suppose that φj(w) is minimal and
semi-alternating for some 0 ≤ j < mx(w). Then φ−1 is level on φj(w), so since
φj(w) is semi-alternating we have that φ is level on φj(w) by Lemma 2.4. Thus,
φj+1(w) is minimal. It remains to show that if j+1 < mx(w) then φj+1(w) is semi-
alternating. In this case, by Equation (3.1) we have mx(φj(w)) = mx(w)− j ≥ 2,
so Lemma 3.5 yields that φj+1(w) is semi-alternating. A symmetric argument with
φ−1 establishes the cases −mx(w) ≤ j ≤ 0.

In fact φ−mx(w)(w) and φmx(w)(w) are not semi-alternating, since by Equa-
tion (3.1) mx(φmx(w)(w)) = mx(w)−mx(w) = 0. Similarly, mx((φ−1)mx(w)(w)) =
0. This means that φ−mx(w)(w) and φmx(w)(w) each have at most one level one-
letter automorphism (again by Lemma 2.4), and in fact φ and φ−1 respectively are
level on these words.

For each −mx(w) ≤ j ≤ mx(w) we have determined the images of φj(w) under
all level automorphisms. Since V (Γ(W )) is connected by level one-letter automor-
phisms, W ′ projects onto V (Γ(W )) and the claim follows.

In order to determine Γ(W ) from W ′, we need to consider the possibility that
some words have been listed in W ′ more than once up to equivalence under ∼J .
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For the two endpoint words φ−mx(w)(w) and φmx(w)(w) we have

mx(φ−mx(w)(w)) = mx(w) +mx(w) ≥ 2,

mx(φmx(w)(w)) = mx(w) +mx(w) ≥ 2.

It follows that for u ∈ {φ−mx(w)(w), φmx(w)(w)} we have (xx)u ≥ 1. Since u is also
not semi-alternating, u is not the image of φj(w) under an element of J . Therefore,
at least one minimal word in W is semi-alternating, and at least one but at most
two distinct minimal words modulo J in W are not semi-alternating. So Γ(W ) is a
connected directed graph with either one or two vertices having outdegree 1 and all
other vertices having outdegree 2. Since an edge from [vi] to [vj ] in Γ(W ) implies
an edge from [vj ] to [vi], Γ(W ) is one of the paths claimed. �

We have completed the proof of Theorem 2.1. The following examples illustrate
the path (P1) of Lemma 3.6.

Example. Class 9.81 contains the word w = aabababab, which for y = b is semi-
alternating. We have ma(w) = 1 and ma(w) = 1, so Γ(W ) for this class is

aaabaabbb

φ --
aabababab

φ−1

mm

φ --
abbaabaab

φ−1

mm

where φ = ({b}, a). Observe that φ shrinks subwords baib (and their inverses),
extends subwords baib (and their inverses), and leaves subwords ba±ib (and their
inverses) fixed. Vertices with outdegree 1 have (bb)w ≥ 1. In each subword bb of
aaabaabbb the automorphism φ introduces a. After applying φ twice, the subword
baab becomes bb, so further applications of φ produce words that are not minimal.

Example. If we begin with a minimal word with (bb)w = 1 rather than (bb)w = 2,
then the automorphic conjugacy class can be larger since the word grows at only
one position rather than two. For example, consider the word aaabababb belonging
to class 9.97. Its graph Γ(W ) is

aaabababb

φ --
aabababab

φ−1

mm

φ --
abababaab

φ−1

mm

φ --
bababaaab

φ−1

mm

where again φ = ({b}, a).

The automorphic conjugacy classes that are most relevant for Theorem 1.1 are
those addressed by Theorem 2.1. Therefore we now give a proof of Theorem 1.1,
even though Theorems 2.2 and 2.3 on which it depends will be proved in Section 4.

Proof of Theorem 1.1. If W is a root class whose minimal words have length n ≥ 9,
then in fact n ≥ 12 by Theorem 1.7; by Theorems 2.2 and 2.3, |V (Γ(W ))| ≤ 5 ≤
n− 5.

Therefore let W be a non-root class whose minimal words have length n ≥ 9.
We may assume that W contains a minimal word v with 1 ≤ mx(v) < ∞, since
otherwise |V (Γ(W ))| ≤ 2 by Lemmas 3.1 and 3.4. By the proof of Lemma 3.6,

|V (Γ(W ))| ≤ mx(v) + 1 +mx(v)

≤ 1 + max{i : xi appears in a minimal word in W}.
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Therefore it suffices to show that if xi appears in a minimal word w of length n
and n− 6 < i ≤ n− 1 then |V (Γ(W ))| ≤ n− 5.

By applying a permutation, we may assume x = a and y = b, so w ≡ an−1b
or w ≡ an−kbub for some subword u of length k − 2 ≤ 3. The word an−1b is not
minimal, so it suffices to consider an−kbub. There are sufficiently few possibilities
for u that we simply check them all.

If u is the empty word, then w ≡ an−2bb. This word is minimal, and its graph
Γ(W ) is of type (P2) for odd n and of type (P3) for even n. The number of vertices
in Γ(W ) is bn/2c, which satisfies bn/2c ≤ n− 5 for n ≥ 9,

There are 3 words of length 1 to check. If u = a then w is not minimal. If
u = a then w ∼ an−2bb so we have already shown that the graph has at most n− 5
vertices. If u = b then w is minimal, and Γ(W ) is (P1) of size 1.

There are 7 words of length 2 to check:

u Γ(W )
aa not minimal
ab not minimal
ba not minimal
bb (P1) of size 1
ba (P1) of size 1
ab (P1) of size 1
aa (P2) or (P3) of size bn/2c

Finally, there are 21 words of length 3 to check:

u Γ(W )
aaa not minimal
aab not minimal
aba not minimal
abb (P1) of size 2
aba not minimal

aba not minimal

aba not minimal
baa not minimal
bab (P1) of size 2
bba (P1) of size 2
bbb (P1) of size 1

u Γ(W )
bba (P1) of size 1
bab (P1) of size 1
baa (P1) of size 1
aba not minimal
abb (P1) of size 1
aba not minimal
aab (P1) of size 1
aaa (P2) or (P3) of size bn/2c
aba not minimal

aba not minimal

Hence |V (Γ(W ))| ≤ n − 5 for all minimal words an−kbub of length n where
2 ≤ k ≤ 5, and the statement follows. �

Theorem 1.1 is sharp in the sense that for every n ≥ 9 there exists an automorphic
conjugacy class W with minimal words of length n such that |V (Γ(W ))| = n − 5.
For example, the class containing an−6bababb is a (P1) class with distinct vertex
representatives an−6−jbababajb for 0 ≤ j ≤ n− 6. There appear to be 5 such (P1)
classes for each n ≥ 9; see Section 5 and Appendix C.

As can be observed from the data in Appendix C, when n is odd the double-edged
path occurs only in its degenerate form.

Corollary 3.7. Let W be a non-root class containing a minimal word of odd length
such that Γ(W ) is of type (P3). Then |V (Γ(W ))| = 1.
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Proof. Let [w] be the endpoint with outdegree 2 of a nondegenerate (P3) graph.
By the proof of Lemma 3.6, φ(w) ∼J φ−1(w) for some one-letter automorphism
φ = ({y}, x) that is level on w. Write πφ(w) ≡ φ−1(w) for some permutation π.
Since w is semi-alternating and (xx)w 6= 0, π(x) ∈ {x, x} and π(y) ∈ {y, y}. If
π maps x 7→ x, y 7→ y or x 7→ x, y 7→ y, then by Lemma 1.2 φπ(w) ≡ φ−1(w),
so π(w) ≡ φ−2(w), which contradicts [w] being an endpoint. Therefore π maps
x 7→ x, y 7→ y or x 7→ x, y 7→ y. By Lemma 1.2, φ−1π(w) ≡ φ−1(w), so w has
a symmetry π(w) ≡ w. Let k ≥ 1 be minimal such that w = ρkπ(w), where
ρ is rotation to the right by one character. Let u be the prefix of w of length
k. Then w = u · π(u) · π2(u) · π3(u) · · ·π−1(u). Since π has order 2, we have
w = (u · π(u))|w|/(2k) and |w| is even. �

4. Root classes

In this section we prove Theorems 2.2 and 2.3, establishing the structure of root
classes. For this, we need a lemma concerning the composition of two one-letter
automorphisms. Note that we compose functions from right to left, as in Section 1.

Lemma 4.1. Let x, y ∈ L2 with y /∈ {x, x}. Let π be the permutation which maps
x 7→ y and y 7→ x. Then

({x}, y) · ({y}, x) = π · ({x, x}, y) · ({x}, y).

Proof. One checks that both sides map x 7→ yx and y 7→ x. �

A consequence of Lemma 4.1 is that [({x}, y)({y}, x)(w)] = [({x}, y)(w)] for all
w ∈ C2. That is, the vertex [({x}, y)({y}, x)(w)] is a neighbor of [w] in Γ(W ).

Now we determine the structure of root classes with no alternating word.

Proof of Theorem 2.2. Let W be a root class with no alternating minimal word.
By Corollary 2.5, the outdegree of a root word vertex [w] is either 2 or 4. If w

is not alternating, then by Lemma 2.4 there are only two level one-letter automor-
phisms on w. Therefore every vertex in Γ(W ) has outdegree 2.

We show that any two distinct vertices in Γ(W ) are neighbors. Suppose that
u, v, w ∈W are minimal words such that v ≡ φ(w) and u ≡ ψ(v) ≡ ψφ(w) for some
one-letter automorphisms φ = ({y}, x) and ψ. We want to show that either [w] = [u]
or [w] is connected to [u] by a one-letter automorphism. This will then imply that
any two vertices that are connected by a sequence of one-letter automorphisms are
either the same vertex or are in fact connected by a single one-letter automorphism.

We know that φ−1 = ({y}, x) is level on v. Since v is a root word which is not
alternating, we have (xx)v = (yy)v 6= 0 and therefore Lemma 2.4 implies that φ−1

and ({x}, y) are the only (distinct modulo InnF2) one-letter automorphisms that
are level on v. Since ψ is level on v, ψ is equivalent modulo InnF2 to either φ−1

or ({x}, y). There are therefore two cases. If ψ is equivalent to φ−1, then we have
w ≡ u. If instead ψ is equivalent to ψ′ = ({x}, y), then by Lemma 4.1 we have
ψφ(w) ≡ ψ′φ(w) = π({x, x}, y)({x}, y)(w), where π is the permutation which maps
x 7→ y and y 7→ x; this implies that [w] is connected to [ψφ(w)] = [u] by a one-letter
automorphism.

We have shown that if w and u are minimal words in W , then [w] = [u] or [w]
and [u] are neighbors. Since the outdegree of each vertex in Γ(W ) is 2, this implies
that there are at most three vertices in Γ(W ). If |V (Γ(W ))| = 1, then Γ(W ) is (R1),
a single vertex with two loops. If |V (Γ(W ))| = 3, then Γ(W ) is (R3), a bi-directed
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3-cycle. Otherwise, |V (Γ(W ))| = 2. Let [w] and [φ(w)] be the two vertices of Γ(W ).
There is a directed edge from [w] to [φ(w)] and another from [φ(w)] to [w], so it
suffices to determine the other two edges. As above, ({x}, y) is level on φ(w) and
not equivalent modulo InnF2 to φ−1, so this automorphism contributes an edge
from [φ(w)] to [({x}, y)(w)], which is one of the two vertices. By Lemma 4.1, there
is a directed edge from [w] to [({x}, y)(w)]. Therefore the other two edges point to
the same vertex, and Γ(W ) is (R2). �

Example. Let W be class 8.37, whose graph is (R3). Let π be the permutation
mapping a 7→ b, b 7→ a. Write φyx = ({y}, x). Then Γ(W ) is the following graph,
where an edge w → v labeled φ satisfies φ(w) ≡ v.

ababaabb

φabvv

πφba

!!
aaababbb

φba --

φab

55

aabbabab
φba

mm

π−1φab

``

Now we start with alternating words. We need several lemmas.

Lemma 4.2. Suppose w0 is an alternating minimal word and φ is a one-letter
automorphism such that φ(w0) is an alternating minimal word. Then φ(w0) = w0.

Proof. Write φ = ({y}, x). Since φ(w0) is alternating, we have (yy)φ(w0) = 0, so
(yxy)w0 = 0 by Lemma 1.4. The only length-2 subwords that cause cancellations
under φ are yx and xy. Since (yxy)w0 = 0 and w0 is alternating, every yx in w0

appears in yxy and every xy appears in yxy. But φ(yxy) = yxy and φ(yxy) = yxy,
so φ causes no cancellations in w0. Since all one-letter automorphisms are level on
w0 by Theorem 1.9, φ also causes no additions in w0. Therefore φ(w0) = w0. �

For the rest of this section, denote φ1 = ({y}, x), φ2 = φ−11 = ({y}, x), φ3 =
({x}, y), and φ4 = φ−13 = ({x}, y). These are four principal one-letter automor-
phisms, and they are distinct modulo InnF2. In this notation, Lemma 4.1 implies
that [φ4φ1(w)] = [φ3(w)]. We record this in the following corollary, along with
analogous statements obtained by applying permutations to L2.

Corollary 4.3. For w ∈ C2,

[φ2φ3(w)] = [φ1(w)]

[φ1φ4(w)] = [φ2(w)]

[φ4φ1(w)] = [φ3(w)]

[φ3φ2(w)] = [φ4(w)].

The statements of the next three lemmas are all of the same form. They deter-
mine the neighborhood of a vertex containing an alternating minimal word. They
form the bulk of the proof of Theorem 2.3. Recall from Theorem 1.9 that all
one-letter automorphisms are level on alternating minimal words.

Lemma 4.4. Let w0 be an alternating minimal word such that [φ1(w0)] = [φ2(w0)]
for some x, y ∈ L2 with y /∈ {x, x}. Then [φ3(w0)] = [φ4(w0)].

Proof. By Theorem 1.9, φ1 is level on w0. Since φ2 = φ−11 , φ2 is level on φ1(w0). By
Lemma 2.4, φ4 is also level on φ1(w0). Let us compute the neighbors of φ1(w0) under
φ2 and φ4. We have [φ2φ1(w0)] = [w0], and Corollary 4.3 implies that [φ4φ1(w0)] =
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[φ3(w0)]. Similarly, the images of φ2(w0) under φ1 and φ3 are [φ1φ2(w0)] = [w0]
and [φ3φ2(w0)] = [φ4(w0)].

If φ1(w0) is alternating, then φ1(w0) = w0 by Lemma 4.2. Then [φ4φ1(w0)] =
[φ3(w0)] implies [φ4(w0)] = [φ3(w0)] as desired.

If φ1(w0) is not alternating, then by Lemma 2.4 the outdegree of [φ1(w0)] is 2.
Since we have shown that [w0], [φ3(w0)], and [φ4(w0)] are all neighbors of [φ1(w0)],
it follows that two of these three vertices are equal. If [φ3(w0)] = [φ4(w0)], we are
finished. If [w0] = [φ3(w0)] or [w0] = [φ4(w0)], then we see that φ3(w0) or φ4(w0)
is alternating; in either case Lemma 4.2 gives φ3(w0) = w0 = φ4(w0). �

Lemma 4.5. Let w0 be an alternating minimal word such that [φ1(w0)] = [φ3(w0)]
for some x, y ∈ L2 with y /∈ {x, x}. Then [φ2(w0)] = [φ4(w0)].

Proof. By the definition of a root word, (yy)φ1(w0) = (xx)φ1(w0); rewriting each
side using Lemma 1.4 gives

(yxy)w0
= (yxy)w0

+ (yxx)w0
+ (xxy)w0

+ (xxx)w0
.

Since w0 is alternating, this equation becomes (yxy)w0 = (yxy)w0 . Symmetrically,
since φ3(w0) is a root word, we have (xyx)w0 = (xyx)w0 .

Let π be a permutation such that φ1(w0) ≡ πφ3(w0). Then (xx)φ1(w0) =
(xx)πφ3(w0) = (xx)φ3(w0), so

(yxy)w0
= (yxy)w0

= (xyx)w0
= (xyx)w0

.

For six of the eight possible permutations π, we show that these four expressions
are equal to 0. For these π, this will imply that no letter occurs two letters away
from itself in w0, so w0 ≡ σ((abab)n) for some permutation σ. As already stated in
Section 2, for this word we have [φ(w0)] = [w0] for each one-letter automorphism
φ.

If π maps x 7→ x, y 7→ y or x 7→ x, y 7→ y, consider (yxy)φ1(w0) = (yxy)πφ3(w0).
Then (yxy)φ1(w0) = (yxy)φ3(w0), and rewriting each side gives

(yy)w0
= (yxy)w0

+ (yxx)w0
+ (xxy)w0

+ (xxx)w0
,

which simplifies to 0 = (yxy)w0 because w0 is alternating.
If π maps x 7→ x, y 7→ y or x 7→ x, y 7→ y, then consider (yxy)φ1(w0) =

(yxy)πφ3(w0). Since (yxy)πφ3(w0) = (yxy)φ3(w0), the right side is the same as before,
and we obtain

(yxxy)w0
= (yxy)w0

+ (yxx)w0
+ (xxy)w0

+ (xxx)w0
,

which simplifies to 0 = (yxy)w0
.

If π maps x 7→ y, y 7→ x or x 7→ y, y 7→ x, use Lemma 1.2 to write φ1(w0) ≡
πφ3(w0) = ({π(x)}, π(y))π(w0). In either case, we obtain φ1(w0) ≡ φ2π(w0) (where
for the permutation x 7→ y, y 7→ x we have used Equation (1.1)). Hence φ21(w0) ≡
π(w0), and φ21(w0) is alternating. In particular, (yxxxy)φ2

1(w0) = 0, and this implies

(yxy)w0
= 0.

Two permutations remain to be considered. Let π map x 7→ y, y 7→ x or x 7→
y, y 7→ x. Lemma 1.2 gives φ1(w0) ≡ πφ3(w0) = ({π(x)}, π(y))π(w0) ≡ φ1π(w0).
Hence w0 ≡ π(w0). We show that the only alternating minimal word satisfying this
equation is the empty word. Assume toward a contradiction that w0 is nonempty.
Let k ≥ 1 be minimal such that w0 = ρkπ(w0), where ρ is rotation to the right by
one character. Let u be the prefix of w0 of length k. Then w0 = u · π(u) · π2(u) ·
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π3(u) · · ·π−1(u). Since π has order 2, we have w0 = (u · π(u))|w0|/(2k) and |w0| is
divisible by 2k. Since w0 is alternating and π(x) ∈ {y, y}, k is odd. Since w0 is a
root word, it follows that u · π(u) is a root word. By Theorem 1.7, |u · π(u)| = 2k
is divisible by 4, which contradicts k being odd. �

As we have just seen, (abab)n is essentially the only alternating minimal word sat-
isfying [φ1(w0)] = [φ3(w0)]. However, the equation [φ1(w0)] = [φ4(w0)], which is the
subject of the following lemma, has additional solutions. For example, abababababab
is a solution.

Lemma 4.6. Let w0 be an alternating minimal word such that [φ1(w0)] = [φ4(w0)]
for some x, y ∈ L2 with y /∈ {x, x}. Then [φ2(w0)] = [φ3(w0)].

Proof. As in the proof of Lemma 4.5, one can show that

(yxy)w0
= (yxy)w0

= (xyx)w0
= (xyx)w0

.

Write φ1(w0) ≡ πφ4(w0). For six of the eight possible permutations π, we now
show that these four expressions are equal to 0; it will follow in these cases that
w0 ≡ σ((abab)n) for some permutation σ, and hence [φ2(w0)] = [φ3(w0)].

If π maps x 7→ x, y 7→ y or x 7→ x, y 7→ y, consider (yxy)φ1(w0) = (yxy)πφ4(w0).
This is equivalent to

(yxxy)w0
= (yxy)w0

+ (yxx)w0
+ (xxy)w0

+ (xxx)w0
,

which simplifies to 0 = (yxy)w0
since w0 is alternating.

If π maps x 7→ x, y 7→ y or x 7→ x, y 7→ y, consider (yxy)φ1(w0) = (yxy)πφ4(w0) =
(yxy)φ4(w0). Therefore 0 = (yxy)w0

.
If π maps x 7→ y, y 7→ x or x 7→ y, y 7→ x, then by Lemma 1.2 we have φ1(w0) ≡

πφ4(w0) = ({π(x)}, π(y))π(w0) ≡ φ2π(w0). As in the proof of Lemma 4.5, φ21(w0) ≡
π(w0) implies (yxy)w0

= 0.
It remains to address the two order-4 permutations mapping x 7→ y, y 7→ x and

x 7→ y, y 7→ x. Let π be either of these permutations. By Lemma 1.2, φ1(w0) ≡
πφ4(w0) ≡ φ1π(w0). Hence w0 ≡ π(w0). Since the conclusion holds for the empty
word, assume w0 is nonempty. Let k ≥ 1 be minimal such that w0 = ρkσ(w0) for
some σ ∈ {π, π−1}, where again ρ is rotation to the right by one character. Let u
be the prefix of w0 of length k. Then w0 = u · σ(u) · σ2(u) · σ3(u) · · ·σ−1(u). Since

σ has order 4, we have w0 = (u · σ(u) · σ2(u) · σ3(u))n =
(∏3

i=0 σ
i(u)

)n
, where

n = |w0|
4k . Therefore σ(w0) ≡ w0. By Lemma 1.2 and Equation (1.1),

σφ2(w0) = ({σ(y)}, σ(x))σ(w0)

≡ φ3σ(w0)

≡ φ3(w0),

so [φ2(w0)] = [φ3(w0)]. �

Experimental evidence suggests that in fact the previous three lemmas can be
generalized, but we do not have a proof.

Conjecture. Lemmas 4.4, 4.5, and 4.6 remain true if we remove the requirement
that w0 is alternating.
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For example, aaaa satisfies the condition [φ1(w0)] = [φ2(w0)] of Lemma 4.4 and
also the conclusion [φ3(w0)] = [φ4(w0)]. Examples for Lemmas 4.5 and 4.6 are,
respectively, aabb and aabbaabb.

To classify the graphs of root classes containing an alternating minimal word,
however, we only need the lemmas as stated.

Proof of Theorem 2.3. First we establish the uniqueness of an alternating word
vertex [w0] in Γ(W ) and that every other vertex is a neighbor of [w0]. Let w0 ∈W
be an alternating root word. If [w0] is the only vertex of Γ(W ), then it is clearly
the unique vertex containing alternating minimal words. Otherwise, let x, y ∈ L2

such that [φ1(w0)] 6= [w0]. By Lemma 4.2, φ1(w0) is not alternating. Thus, by
Lemma 2.4, the outdegree of [φ1(w0)] is 2. As in the proof of Lemma 4.4, the
principal automorphisms that are level on φ1(w0) are φ2 and φ4. The image of
φ1(w0) under φ2 is w0, and by Corollary 4.3 the vertex [φ4φ1(w0)] is connected to
[w0] by a one-letter automorphism. That is, any edge from [φ1(w0)] that does not
point to [w0] points to a neighbor of [w0] (possibly to [φ1(w0)] itself). Since Γ(W )
is connected, this implies that every vertex other than [w0] is, in fact, a neighbor
of [w0]. Lemma 4.2 now implies that [w0] is the unique vertex in Γ(W ) containing
an alternating minimal word.

By Lemma 4.2, if [w0] is connected to itself by [φ] for some one-letter automor-
phism φ then [w0] is also connected to itself by [φ−1]. In other words, loops on [w0]
come in pairs of inverse automorphisms. We consider separately the cases that [w0]
has 4, 2, or 0 loops.

If [w0] has 4 loops, then Γ(W ) is (R4), a single vertex with four loops.
Suppose [w0] has exactly 2 loops. Let x, y be such that [φ1(w0)] = [w0] =

[φ2(w0)]. By Lemma 4.4, [φ3(w0)] = [φ4(w0)], so Γ(W ) has exactly two vertices,
[w0] and [φ3(w0)]. Since φ3 and φ4 are inequivalent modulo InnF2, two edges
connect [w0] to [φ3(w0)]. This accounts for all four edges emanating from [w0], so
it suffices to determine the edges from [φ3(w0)]. The one-letter automorphisms that
are level on φ3(w0) are φ4 and φ2. Moreover, φ4φ3(w0) = w0 and by Corollary 4.3
[φ2φ3(w0)] = [φ1(w0)] = [w0]. There are therefore two edges from [φ3(w0)] to [w0],
so Γ(W ) is (R5).

Finally, suppose that [w0] has no loops. Corollary 4.3 implies that [φ1(w0)] is
connected to [φ3(w0)] by a one-letter automorphism and that [φ2(w0)] is connected
to [φ4(w0)] by a one-letter automorphism (allowing the possibility that these edges
may be loops). If [w0] has four distinct neighbors, then, since [w0] is the only vertex
with outdegree 4, the outdegree of each other vertex is 2, and it follows that Γ(W )
is the bow tie (R7). If [w0] has fewer than four neighbors, then there is at least one
pair of identified images of w0. The

(
4
2

)
= 6 possibilities are as follows.

If [φ1(w0)] = [φ2(w0)], then [φ3(w0)] = [φ4(w0)] by Lemma 4.4. Therefore [w0]
has exactly two neighbors, each of which has outdegree 2. Moreover, two edges
connect [w0] to each of its neighbors. Therefore Γ(W ) is (R6).

If [φ1(w0)] = [φ3(w0)], then the proof of Lemma 4.5 shows that φ1(w0) is alter-
nating. Therefore φ1(w0) = w0 by Lemma 4.2, contradicting our assumption that
w0 has no loops.

If [φ1(w0)] = [φ4(w0)], then [φ2(w0)] = [φ3(w0)] by Lemma 4.6. The vertices
of Γ(W ) are as in the case [φ1(w0)] = [φ2(w0)], with analogous edges, so Γ(W ) is
(R6).

The remaining three cases are equivalent under permutations to the first three.
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If [φ3(w0)] = [φ4(w0)], then let σ be the permutation that maps x 7→ y, y 7→ x.
Then [φ1σ(w0)] = [φ2σ(w0)], which is the first case we considered, so Γ(W ) is (R6).

If [φ2(w0)] = [φ4(w0)], letting σ map x 7→ x, y 7→ y gives [φ1σ(w0)] = [φ3σ(w0)],
which is the second case and so does not occur when [w0] has no loops.

If [φ3(w0)] = [φ2(w0)], then [φ1σ(w0)] = [φ4σ(w0)], where σ maps x 7→ y, y 7→ x.
This is the third case, so Γ(W ) is (R6). �

5. Enumeration

Having classified automorphic conjugacy classes of F2 in this paper, it is natural
to ask how many automorphic conjugacy classes contain minimal words of length
n. In this section we make some observations that suggest the intriguing possibility
of an exact enumeration. We restrict our speculation to non-root classes, which
outnumber root classes (at least for 5 ≤ n ≤ 20 and probably for n > 20 as well).

In Section 3 we mentioned that for 9 ≤ n ≤ 20 there are precisely 5 (P1) classes
of size |V (Γ(W ))| = n − 5 (the largest possible size, per Theorem 1.1). This can
be clearly seen in Appendix C as an eventually constant diagonal of 5s in the table
enumerating (P1) classes. Our first conjecture is that all diagonals of this table are
eventually constant. The tables enumerating (P2) and (P3) classes, which result
from folding, suggest that these classes have size at most n/2 for n ≥ 2, so we
phrase the conjecture as follows.

Conjecture. Fix k ≥ 0. The number of automorphic conjugacy classes of F2 of
size n− k whose minimal words have length n is constant for sufficiently large n.

For k = 0, 1, 2, . . . , these constants appear to be

(5.1) 0, 0, 0, 0, 0, 5, 12, 17, 24, 67, 196, 437, . . . .

A simple expression for the kth term of this sequence is not obvious. However,
refining our parameterization of classes reveals additional structure.

Define the weight of a word w to be min((a)w, (b)w). Suppose φ = ({y}, x) is
level on a minimal word w of length n. Then (y)w = (y)φ(w), and hence (x)w =
n − (y)w = n − (y)φ(w) = (x)φ(w). Therefore the weight of a minimal word is
preserved under level one-letter automorphisms. The weight is also preserved under
inner automorphisms and permutations, so the weight is invariant on all minimal
words in an automorphic conjugacy class W .

Let us count classes not by size alone but by size and weight. There is only one
class of weight 0 for each n ≥ 0, namely the class containing an, which has size 1.
There are no classes of weight 1, since an−1b is not minimal.

We return to (P1) classes. For 9 ≤ n ≤ 20, the 5 classes of type (P1) and size
n − 5 all have weight 4. Similarly, for 10 ≤ n ≤ 20, all 12 second-largest (P1)
classes (those of size n − 6) have weight 4. The 17 third-largest classes all have
weight 4, and the 24 fourth-largest classes also all have weight 4. However, not all
67 fifth-largest classes have weight 4; it turns out that 29 have weight 4 and 38
have weight 6. If, instead of Sequence (5.1), we consider the number of classes (for
sufficiently large n) of size n− k whose minimal words have length n and weight 4,
we obtain the sequence

0, 0, 0, 0, 0, 5, 12, 17, 24, 29, 36, 41, . . . ,

whose terms are given by a simple expression. Namely, this sequence is eventually
a linear quasi-polynomial with modulus 2.
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Conjecture. For k ≥ 4 and n ≥ max(2k−2, 9), the number of (P1) classes of size
n− k whose minimal words have length n and weight 4 is{

6k − 24 if k ≡ 0 mod 2

6k − 25 if k ≡ 1 mod 2.

It appears that all classes of odd weight have size 1. For even weights, however,
we see behavior similar to weight-4 classes. For example, fixing k, the number of
(P1) classes of size n − k and weight 6 appears to be constant for n ≥ 2k − 5,
with values 38, 160, 396, 800 for k = 9, . . . , 12. These four terms are not enough
to guess a reliable expression for the kth term, but we suspect it is given by a
quasi-polynomial as well.

Therefore it seems that sufficiently large (P1) classes should be amenable to enu-
meration. Analogous conjectures for (P2) and (P3) classes aren’t quite as strongly
suggested by the data available in Appendix C, but we are still willing to state the
following.

Conjecture. Fix an odd k ≥ 1. The number of (P2) classes of size (n − k)/2
whose minimal words have length n is constant for sufficiently large odd n.

Conjecture. Fix an even k ≥ 0. The number of (P3) classes of size (n − k)/2
whose minimal words have length n is constant for sufficiently large even n.

On the other side of the spectrum, counting small classes as opposed to large
classes seems promising as well. Let us consider classes of size 1, which for 0 ≤
n ≤ 20 account for more than half of all classes whose minimal words have length
n (nearly 88% for n = 20). For odd weights, the number of size-1 classes appears
to be given by a polynomial.

Conjecture. For n ≥ 7, the number of non-root classes of size 1 whose minimal
words have length n and weight 3 is 3n− 11.

Conjecture. For n ≥ 11, the number of non-root classes of size 1 whose minimal
words have length n and weight 5 is

1

6

(
35n3 − 645n2 + 3988n− 8262

)
.

For even weights, the expressions seem to be quasi-polynomials rather than poly-
nomials.

Conjecture. For n ≥ 5, the number of non-root classes of size 1 whose minimal
words have length n and weight 2 is{

n− 2 if n ≡ 0 mod 2

n− 3 if n ≡ 1 mod 2.

Conjecture. For n ≥ 9, the number of non-root classes of size 1 whose minimal
words have length n and weight 4 is

(
2n3 − 36n2 + 244n− 540

)
/6 if n ≡ 0 mod 4(

2n3 − 36n2 + 241n− 537
)
/6 if n ≡ 1 mod 4(

2n3 − 36n2 + 244n− 546
)
/6 if n ≡ 2 mod 4(

2n3 − 36n2 + 241n− 537
)
/6 if n ≡ 3 mod 4.
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We leave these conjectures and their generalizations as open problems. The
referee has pointed out that, aside from independent interest, knowing the number
of automorphic conjugacy classes of a given size would allow one to compute the
expected size |V (Γ(W ))| of a random class W whose minimal words have length n.
There are sufficiently many classes of size 1 that for each 0 ≤ n ≤ 20 this number
lies in the interval [1, 1.76), with the value for n = 20 being approximately 1.18.
Does the expected size of a random class lie in the interval [1, 2) for all n ≥ 0? Does
the expected size of a random class tend to 1 as n gets large?
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Appendix A. Table of automorphic conjugacy classes

The following tables list all automorphic conjugacy classes containing a word of
length n ≤ 9. For a given length, classes are sorted first by size and then by the
lexicographically least word. Representatives modulo J of minimal words in each
class are given, and each class is identified by its graph type in Theorems 2.1, 2.2,
and 2.3. Data files listing all automorphic conjugacy classes containing a word of
length n ≤ 20 can be downloaded from the second author’s web site1.

0.1 (R4) ε 7.7 (P1) aaababb 8.20 (P1) aaabbaab

1.1 (R1) a 7.8 (P1) aaababb 8.21 (P1) aaabbaab

2.1 (P3) aa 7.9 (P1) aaabbab 8.22 (P1) aaabbabb
3.1 (P3) aaa 7.10 (P1) aaabbab 8.23 (P1) aaabbabb

4.1 (P3) aaaa 7.11 (P1) aaabbab 8.24 (P1) aaabbabb

4.2 (R4) abab 7.12 (P3) aaabaab 8.25 (P1) aaabbbab

4.3 (R5) aabb 7.13 (P1) aabaabb 8.26 (P1) aaabbbab

abab 7.14 (P1) aabbaab 8.27 (P3) aaabaaab

5.1 (P3) aaaaa 7.15 (P1) aabbabb 8.28 (P1) aabbaabb

5.2 (P3) aabab 7.16 (P2) aaaaabb 8.29 (P1) aabbaabb

5.3 (P3) aabab aaaabab 8.30 (R1) aabbabab

5.4 (P2) aaabb aaabaab 8.31 (R4) abababab
aabab 8.1 (P3) aaaaaaaa 8.32 (R2) aabababb

6.1 (P3) aaaaaa 8.2 (P3) aaaaabab aababbab

6.2 (P3) aaabab 8.3 (P1) aaaaabbb 8.33 (R2) aabababb

6.3 (P1) aaabbb 8.4 (P3) aaaaabab aababbab

6.4 (P3) aaabab 8.5 (P3) aaaabaab 8.34 (R5) aabbaabb

6.5 (P3) aabaab 8.6 (P1) aaaababb abababab

6.6 (P1) aababb 8.7 (P1) aaaababb 8.35 (R5) aabbabab

6.7 (P1) aabbab 8.8 (P1) aaaababb abababab

6.8 (P1) aabbab 8.9 (P1) aaaabbab 8.36 (R5) aababbab

6.9 (P3) aabaab 8.10 (P1) aaaabbab abababab

6.10 (P3) aaaabb 8.11 (P1) aaaabbab 8.37 (R3) aaababbb

aaabab 8.12 (P1) aaaabbbb aabababb

aabaab 8.13 (P3) aaaabaab aabbabab

7.1 (P3) aaaaaaa 8.14 (P3) aaabaaab 8.38 (R6) aaabbabb

7.2 (P3) aaaabab 8.15 (P1) aaabaabb aababbab

7.3 (P1) aaaabbb 8.16 (P1) aaabaabb abababab

7.4 (P3) aaaabab 8.17 (P1) aaabaabb 8.39 (R3) aababbab

7.5 (P3) aaabaab 8.18 (P1) aaababbb aababbab

7.6 (P1) aaababb 8.19 (P1) aaabbaab aabababb

1http://thales.math.uqam.ca/~rowland/data/automorphic_conjugacy_classes.html as of
this writing.

http://thales.math.uqam.ca/~rowland/data/automorphic_conjugacy_classes.html
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8.40 (R3) aababbab 9.17 (P1) aaaabaabb 9.49 (P3) aabababab

aabababb 9.18 (P1) aaaababbb 9.50 (P3) aabababab

aabbabab 9.19 (P1) aaaababbb 9.51 (P3) aabababab

8.41 (P3) aaaaaabb 9.20 (P1) aaaababbb 9.52 (P3) aabababab

aaaaabab 9.21 (P1) aaaabbaab 9.53 (P1) aaaababbb
aaaabaab 9.22 (P1) aaaabbaab aaabbabab

aaabaaab 9.23 (P1) aaaabbaab 9.54 (P1) aaaabbabb

8.42 (R7) aabababb 9.24 (P1) aaaabbabb aaababbab

aabbabab 9.25 (P1) aaaabbabb 9.55 (P1) aaaabbbab

aabbabab 9.26 (P1) aaaabbabb aaabababb

aabbabab 9.27 (P1) aaaabbbab 9.56 (P1) aaabababb

abababab 9.28 (P1) aaaabbbab aaabbabab

8.43 (R7) aabababb 9.29 (P1) aaaabbbab 9.57 (P1) aaababbab

aababbab 9.30 (P3) aaaabaaab aaabbabab

aabbabab 9.31 (P1) aaabaaabb 9.58 (P1) aaababbab

aababbab 9.32 (P1) aaabaabbb aababbabb

abababab 9.33 (P1) aaabbaaab 9.59 (P1) aaababbab

9.1 (P3) aaaaaaaaa 9.34 (P1) aaabbaaab aaabbabab

9.2 (P3) aaaaaabab 9.35 (P1) aaabbaabb 9.60 (P1) aaabababb
9.3 (P1) aaaaaabbb 9.36 (P1) aaabbaabb aababaabb

9.4 (P3) aaaaaabab 9.37 (P1) aaabbaabb 9.61 (P1) aaabababb

9.5 (P3) aaaaabaab 9.38 (P1) aaabbabbb aaabbabab

9.6 (P1) aaaaababb 9.39 (P1) aaabbbaab 9.62 (P1) aaabababb

9.7 (P1) aaaaababb 9.40 (P1) aaabbbaab aaababbab

9.8 (P1) aaaaababb 9.41 (P1) aaabbbabb 9.63 (P1) aaabababb

9.9 (P1) aaaaabbab 9.42 (P1) aaabbbabb aaababbab

9.10 (P1) aaaaabbab 9.43 (P2) aababaabb 9.64 (P2) aaababbab

9.11 (P1) aaaaabbab 9.44 (P3) aabababab aabababab

9.12 (P1) aaaaabbbb 9.45 (P3) aabababab 9.65 (P1) aaabbabab

9.13 (P3) aaaaabaab 9.46 (P3) aabababab aaababbab

9.14 (P3) aaaabaaab 9.47 (P3) aabababab 9.66 (P1) aaabbabab

9.15 (P1) aaaabaabb 9.48 (P2) aabbaabab aabbabbab
9.16 (P1) aaaabaabb
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9.67 (P1) aaabbabab 9.82 (P1) aaabbaabb 9.93 (P1) aabbaabab

aaababbab aabbaabab aabbabaab

9.68 (P1) aaabbabab aabababab aabababab

aaabababb 9.83 (P1) aaabbabbb 9.94 (P1) aabbaabab

9.69 (P1) aaabbabab aabaabbab aabbabbab

aabbababb aabababab aabababab

9.70 (P1) aaabbabab 9.84 (P1) aabaababb 9.95 (P1) aabbabaab

aaabababb aabaabbab aabbabbab

9.71 (P1) aaabababb aabababab aabababab

aababbabb 9.85 (P1) aabaabbab 9.96 (P2) aaaaaaabb

9.72 (P1) aaababbab aabababab aaaaaabab

aababbaab aabbababb aaaaabaab

9.73 (P1) aaabababb 9.86 (P1) aabaabbab aaaabaaab

aaababbab aabababab 9.97 (P1) aaabababb

9.74 (P1) aaabababb aababaabb aaabbabab

aaababbab 9.87 (P1) aabaababb aabababab

9.75 (P2) aaababbab aabaabbab aabababab

aabababab aabababab 9.98 (P1) aaabababb

9.76 (P1) aabaababb 9.88 (P1) aabaababb aaabbabab

aabaabbab aababaabb aabababab

9.77 (P1) aabaababb aabababab aabababab

aabaabbab 9.89 (P1) aabaababb 9.99 (P1) aaababbab

9.78 (P1) aababbaab aabbaabab aaababbab

aababbabb aabababab aabababab

9.79 (P1) aababaabb 9.90 (P1) aababaabb aabababab

aabbaabab aabbabaab 9.100 (P1) aaabbabab

9.80 (P1) aababbabb aabababab aaabababb

aabbabbab 9.91 (P1) aababaabb aabababab

9.81 (P1) aaabaabbb aabababab aabababab

aabaababb aababbaab 9.101 (P1) aaabbabab

aabababab 9.92 (P1) aababbaab aaabababb

aabbabaab aabababab

aabababab aabababab
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Appendix B. Number of automorphic conjugacy classes of each type

This table gives the number of automorphic conjugacy classes whose minimal
words have length n for each graph type in Theorems 2.1, 2.2, and 2.3.

n (P1) (P2) (P3) (R1) (R2) (R3) (R4) (R5) (R6) (R7)
0 0 0 0 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0 0 0
4 0 0 1 0 0 0 1 1 0 0
5 0 1 3 0 0 0 0 0 0 0
6 4 0 6 0 0 0 0 0 0 0
7 10 1 5 0 0 0 0 0 0 0
8 22 0 8 1 2 3 1 3 1 2
9 81 5 15 0 0 0 0 0 0 0

10 298 4 38 0 0 0 0 0 0 0
11 855 7 49 0 0 0 0 0 0 0
12 2140 4 96 4 12 244 1 7 5 31
13 7040 29 155 0 0 0 0 0 0 0
14 22244 30 342 0 0 0 0 0 0 0
15 64774 49 553 0 0 0 0 0 0 0
16 175209 46 1104 11 70 10899 1 19 15 380
17 543631 185 1927 0 0 0 0 0 0 0
18 1649842 232 3892 0 0 0 0 0 0 0
19 4824825 343 6889 0 0 0 0 0 0 0
20 13535352 406 13592 35 400 473355 1 55 51 4547
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Appendix C. Number of paths of each size

The following table gives the number of (P1) classes W whose minimal words
have length n and whose graph Γ(W ) has m vertices. Zeros are omitted.

n m = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3
4
5
6 4
7 10
8 22
9 35 26 15 5

10 224 35 22 12 5
11 741 44 33 20 12 5
12 1984 53 40 29 17 12 5
13 4538 1964 401 76 27 17 12 5
14 17064 3762 1052 236 72 24 17 12 5
15 55096 6433 2279 633 205 70 24 17 12 5
16 158613 10156 4197 1440 477 201 67 24 17 12 5
17 415072 110789 12916 3041 1043 446 199 67 24 17 12 5
18 1353447 250705 35075 6714 2250 888 442 196 67 24 17 12 5
19 4197308 513440 89404 16198 4995 1862 857 440 196 67 24 17 12 5
20 12303132 968489 204968 40097 11122 4226 1707 853 437 196 67 24 17 12 5

The following tables give the number of (P2) (left table) and (P3) (right ta-
ble) classes W whose minimal words have length n and whose graph Γ(W ) has m
vertices.

n m = 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5 0 1
6
7 0 0 1
8
9 2 2 0 1

10 2 2
11 2 2 2 0 1
12 2 2
13 18 6 2 2 0 1
14 22 6 2
15 26 12 6 2 2 0 1
16 30 14 2
17 138 26 10 6 2 2 0 1
18 188 36 6 2
19 242 58 22 10 6 2 2 0 1
20 308 82 14 2

n m = 1 2 3 4 5 6 7 8 9 10
0
1 1
2 1
3 1
4 1
5 3
6 5 0 1
7 5
8 7 0 0 1
9 15

10 31 4 2 0 1
11 49
12 85 4 4 2 0 1
13 155
14 301 28 8 2 2 0 1
15 553
16 1031 44 16 8 2 2 0 1
17 1927
18 3659 172 38 12 6 2 2 0 1
19 6889
20 13123 336 82 28 12 6 2 2 0 1
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