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Abstract. We use a method of Goulden and Jackson to bound freq1(K), the

limiting frequency of 1 in the Kolakoski word K. We prove that |freq1(K) −
1/2| ≤ 17/762, assuming the limit exists, and establish the semi-rigorous

bound |freq1(K)− 1/2| ≤ 1/46.

1. Introduction

The Kolakoski word is an infinite sequence of 1’s and 2’s that is equal to its own
run length sequence:
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Up to the choice of the first term, K is defined uniquely by this property. Beginning
with 1 instead of 2 produces the word 1K, which was introduced by Kolakoski [5, 6].

Let on be the number of 1’s occurring in the first n terms of K, and let

freq1(K) := lim
n→∞

on
n
.

It was conjectured by Dekking [2] that this limit exists and equals 1/2. Kimberling’s
web page [4], where this conjecture is listed among several others, is responsible
for its popularity. In this paper we use the Goulden–Jackson cluster method to
give bounds on freq1(K) consistent with the conjecture. In particular, we prove
the following.

Theorem. If the limiting frequency freq1(K) of 1 in the Kolakoski word exists,
then ∣∣∣∣freq1(K)− 1

2

∣∣∣∣ ≤ 17
762
≈ 0.0223097.

This method was explored in a different setting by Chvátal [1], who produced
this bound and several better bounds, reducing the difference from 1/2 to∣∣∣∣freq1(K)− 1

2

∣∣∣∣ ≤ 35
41754

≈ 0.0008382.

We thank Jean-Paul Allouche for pointing out Chvátal’s paper to us.

Date: September 26, 2008.
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2. The Goulden–Jackson cluster method

2.1. Description. The Goulden–Jackson cluster method [3] is an efficient way of
counting the number of words w on a given alphabet such that no subword of w
appears in a given set S. We say that w avoids S.

Here we use an extension of the method by Noonan and Zeilberger [7] that tracks
the frequency of the letters in a word. Define the weight of a word w to be

weight(w) = x
|w|1
1 x

|w|2
2 t

|w|
,

where |w|α is the number of occurrences of α in w and |w| is the length of w. Let
W be the set of words on {1, 2} that avoid S. Let the weight of W be

weight(W ) =
∑
w∈W

weight(w) =
∞∑
n=0

pn(x1, x2)tn,

where pn(x1, x2) is a polynomial in x1 and x2 that carries information about
the set of length-n words avoiding S. The Goulden–Jackson algorithm computes
weight(W ) as a rational expression in x1, x2, and t. We refer the reader to the
papers cited above for details of the algorithm.

2.2. Avoided subwords. To use the Goulden–Jackson method we must find words
that never appear as subwords of K. We accomplish this by capitalizing on the fact
that if w is a subword of K then the run length sequence of w is also a subword of
K. This means that if w is not a subword of K then any word whose run length
sequence contains w is also not a subword of K. We start by observing that the
word 3 does not occur in K because K is a word on {1, 2}. Therefore, no word
with 3 in its run length sequence can be a subword of K either; in particular, 111
and 222 cannot be subwords of K.

Now that we know that K avoids 111 and 222, we know that no word with 111
or 222 in its run length sequence can occur in K. Namely, K avoids 12121 and
21212 (since their run length sequences contain 111), and K also avoids 112211 and
221122 (since their run length sequences are 222).

There is a subtlety here, which is that 111 is the run length sequence of the
words 212 and 121, yet these words both do appear in K. However, they only
occur as part of the larger words 22122 and 11211, and these word have run length
sequences 212, not 111. We pad 212 with 1’s on both ends to ensure that the run
length sequence contains 111, and similarly we pad 121 with 2’s. This padding is
necessary whenever the run length sequence begins or ends with 1.

We iterate this process to obtain additional words that K avoids, producing the
tree in Figure 1. Define Sd be the set of words in the tree in levels 1 through d (i.e.,
not including the root, 3). There are 2d+1 − 2 words in Sd.

This approach to producing words avoided by K is symmetric with respect to
interchanging 1 and 2, so if we use all words in Sd it follows that pn(x1, x2) is
symmetric in x1 and x2. Because of this symmetry, all our bounds have the form
|freq1(K) − 1/2| ≤ ε. Experiments with asymmetric word sets have not improved
upon the bounds obtained with symmetric sets, so we do not pursue them here.
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111 222

12121 21212 112211 221122

121121121 212212212 11211211 22122122 1212211212 2121122121 1122121122 2211212211

Figure 1. The first four generations in an infinite tree of words
that the Kolakoski word avoids.

3. Results

We have three different (but closely related) ways of using the Goulden–Jackson
method to produce bounds on freq1(K). When we can compute the full generat-
ing function weight(W ), the denominator gives a bound directly. For large sets S
computing the generating function as a rational expression is not computationally
feasible; in this case we resort to computing the first few terms of the series expan-
sion. Each term of the series provides a bound on freq1(K), although in general
these bounds are not as good as the ones we get from the denominator. Finally, by
examining many terms of the series we can often experimentally determine a closed
form for the bounds being produced, which, after taking a limit, gives an improved
bound that is semi-rigorous.

3.1. Bounds from the denominator. From the term pn(x1, x2)tn we can deter-
mine the minimum number of 1’s that occur in an n-letter word avoiding S; this is
the minimum degree in x1 of this polynomial. Let

minratio
k∑
i=1

cix
oi
1 x

ni−oi
2 tni = min

1≤i≤k

oi
ni

for ci ∈ Z and ni ≥ 1.
If weight(W ) = N/(1 −D) for some polynomials N and D, then weight(W ) =∑∞
n=0ND

n, and
minratioNDn → minratioD

as n → ∞. Thus the denominator of weight(W ) dictates the asymptotic behavior
of minratio pn(x1, x2)tn.

For example, using the set S1 = {111, 222} produces the generating function

weight(W ) =

(
x2

1t
2 + x1t+ 1

) (
x2

2t
2 + x2t+ 1

)
1− x2

1x
2
2t

4 − x2
1x2t3 − x1x2

2t
3 − x1x2t2

.

Here minratioD = 1/3, and the maximum ratio is 2/3. Therefore if the limit exists
we have |freq1(K)− 1/2| ≤ 1/6.

The minratio for S2 is also 1/3 despite additional words. However, using S3

produces the denominator

1 + x18
1 x

18
2 t

36 − x16
1 x

17
2 t
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1 x

16
2 t
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1 x

15
2 t

30 + 3x12
1 x
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2 t
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1 x
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2 t

21 + x11
1 x
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2 t
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1x

10
2 t
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1x

9
2t
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1 x

8
2t
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1x

8
2t

15

− x8
1x

7
2t

15 − 2x6
1x

6
2t

12 − x5
1x

5
2t

10 − 2x4
1x

5
2t

9 − 2x5
1x

4
2t

9 − x4
1x

4
2t

8

with minratioD = 4/9, giving |freq1(K)− 1/2| ≤ 1/18.
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3.2. Bounds from series terms. Computing weight(W ) as a rational expression
requires solving a system of linear equations, and this system is large when there
are many words in S. Therefore, to compute improved bounds we use a modified
algorithm, available in the function wGJseries in Zeilberger’s package DAVID IAN
[8], that computes only the first N terms of the series. The following proposition
says that each term puts a bound on freq1(K). The idea is that bounding the
number of 1’s in every length-n subword of K produces a bound that extends to
all of K. Recall that om is the number of 1’s in the first m terms of K.

Lemma. If a ≤ |w|1 ≤ b for every length-n subword w of K, then a/n ≤ freq1(K) ≤
b/n if the limit exists.

Proof. For an arbitrary m, we have m = qn + r for some q ∈ Z and 0 ≤ r < n.
Partition the first m terms of K into q consecutive blocks of length n, leaving a
remainder block of length r. The number of 1’s in each block of length n is at most
b, so om ≤ qb+ r. Similarly, om ≥ qa. Therefore for all m we have

qa

m
≤ om

m
≤ qb+ r

m
.

Substituting q = m−r
n and letting m→∞ we get that

a

n
≤ lim
m→∞

om
m
≤ b

n
if the limit in question exists. �

For example, we compute weight(W ) with S1 = {111, 222} out to term N = 5
to be

1 + (x1 + x2) t+
(
x2

1 + 2x1x2 + x2
2

)
t2 +

(
3x2

1x2 + 3x1x
2
2

)
t3

+
(
2x3

1x2 + 6x2
1x

2
2 + 2x1x

3
2

)
t4 +

(
x4

1x2 + 7x3
1x

2
2 + 7x2

1x
3
2 + x1x

4
2

)
t5.

From the coefficient of t3, we conclude that 1 ≤ |w|1 ≤ 2 for every word of length
3 avoiding 111 and 222. This information gives the bound |freq1(K)− 1/2| ≤ 1/6,
which in this case is the same bound obtained from the denominator. While we
could have used any coefficient in the series expansion to get a bound, the bounds
we get from the coefficients of t4 and t5 are actually worse.

Performing similar computations on Sd for larger d produces better bounds. The
following table gives the best bound ε(n) = 1/2 − minratio pn(x1, x2)tn achieved
among the first N terms. Computing N = 800 terms for d = 5 took a day and a
half.

d |Sd| N n ε(n)
1 2 200 3 1/6
2 6 200 3 1/6
3 14 200 9 1/18
4 30 500 498 17/498
5 62 800 762 17/762
6 126 600 555 5/222

The best bound here is |freq1(K)− 1/2| ≤ 17/762, provided by d = 5.
For 1 ≤ d ≤ 3 the bounds achieved are best possible for these word sets; indeed

they are the same bounds obtained from minratioD for weight(W ). For d ≥ 4,
computing more terms will produce increasingly better bounds, although for a
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fixed d the bounds approach 1/2−minratioD, as discussed in the following section.
Likewise, using more words should produce better bounds, although this increases
the computation time.

3.3. Implied bounds. In fact the sequence of minimum degrees of x1 in pn(x1, x2)
has the simple structure of a linear quasi-polynomial for sufficiently large n. More-
over, the successive maxima of the sequence minratio pn(x1, x2)tn eventually occur
in just one of the residue classes.

Having computed several terms for d = 1 it is not difficult to guess that for n ≥ 1
the minimum degree of x1 in pn(x1, x2) is given by the linear quasi-polynomial

n
3 if n ≡ 0 mod 3,
n−1

3 if n ≡ 1 mod 3,
n−2

3 if n ≡ 2 mod 3.

Therefore minratio pn(x1, x2)tn → 1/3, and in fact the limit is attained every three
terms beginning at n = 3. The sequence of minimum degrees for d = 2 is identical
to that for d = 1.

For d = 3, nminratio pn(x1, x2)tn is given by

4 · n9 if n ≡ 0 mod 9,
4 · n−1

9 if n ≡ 1 mod 9,
4 · n−2

9 if n ≡ 2 mod 9,
4 · n−3

9 + 1 if n ≡ 3 mod 9,
4 · n−4

9 + 1 if n ≡ 4 mod 9,
4 · n−5

9 + 1 if n ≡ 5 mod 9,
4 · n−6

9 + 2 if n ≡ 6 mod 9,
4 · n−7

9 + 2 if n ≡ 7 mod 9,
4 · n−8

9 + 3 if n ≡ 8 mod 9.

The limit, 4/9, is first attained at n = 9, producing ε = 1/18.
For higher values of d, the limit is not attained by any term. The sequence of

minimum ratios for d = 4 and d = 5 are eventually linear quasi-polynomials. Using
d = 6 iterations of words, one finds that at least the first 600 terms in the series
have the same minratio as those for d = 5, with the exception of n = 62; therefore
the same eventual quasi-polynomial seems to hold.

For d = 4 the quasi-polynomial has modulus 15. For residue class n ≡ i mod 15
the main term is 7 · n−i15 , and the constant terms for i = 0, 1, . . . , 14 are

−1,−1, 0, 1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 5, 5.

The successive maxima are (7m + 1)/(15m + 3) for m ≥ 2 and occur at terms
n = 15m+ 3. Thus the limit is 7/15, producing ε = 1/30.

For d = 5 the modulus is 69. The main term is 33 · n−i69 for n ≡ i mod 69, and
the constant terms are

− 1,−1, 0, 1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 5, 5, 6, 6, 7, 8, 8, 8, 9, 9, 9, 10, 11, 11,
12, 12, 13, 13, 14, 14, 15, 15, 15, 16, 17, 17, 18, 18, 18, 19, 19, 20, 21, 21, 21,

22, 22, 22, 23, 24, 24, 25, 25, 25, 26, 26, 27, 28, 28, 28, 29, 29, 30, 31, 31, 31.
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The successive maxima are (33m + 1)/(69m + 3) for m ≥ 3 and occur at terms
n = 69m+ 3; for example, m = 11 produces the best rigorous bound

ε =
1
2
− 33 · 11 + 1

69 · 11 + 3
=

17
762

.

Therefore most probably minratioD = 33/69 for weight(W ) in this case, and∣∣∣∣freq1(K)− 1
2

∣∣∣∣ ≤ 1
46
≈ 0.0217391.
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