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Abstract. The study of arithmetic properties of binomial coefficients
has a rich history. A recurring theme is that p-adic statistics reflect the
base-p representations of integers. We discuss many results expressing
the number of binomial coefficients (::L) with a given p-adic valuation
in terms of the number of occurrences of a given word in the base-p
representation of n, beginning with a result of Glaisher from 1899, up
through recent results by Spiegelhofer—Wallner and Rowland.
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1 Valuations of binomial coefficients

In 1852, Kummer [I0, pages 115-116] determined the exact power of a prime p
that divides a binomial coefficient (). To state this result, let v,(n) denote the
p-adic valuation of n, that is, the exponent of the highest power of p dividing n.

Theorem 1 (Kummer). Let p be a prime, and let n and m be integers with
0<m<mn. Then Vp((;)) is the number of carries involved in adding m to n—m
in base p.

Kummer’s theorem is the first of many results to express arithmetic informa-
tion about binomial coeflicients in terms of base-p representations of integers.

Glaisher [6l, §14] seems to have been the first to count binomial coefficients
satisfying a given congruence condition. He showed that the number of integers
m in the range 0 < m < n such that (:fl) is odd is 2!7l1. Here |n|1 is the number
of 1s in the standard base-2 representation of n.

Half a century later, Glaisher’s result was generalized to an arbitrary prime
by Fine [5, Theorem 2]. For a prime p and an integer n > 0, let 6, o(n) be the
number of integers m in the range 0 < m < n such that (::L) Z 0 mod p. Let
[n| be the number of occurrences of the word w in the base-p representation of

n. Fine showed that )
p—

Bpo(n) = [J(d+ 1),
d=0
Since the publication of Fine’s result, many authors have been interested in
generalizations to higher powers of p. A natural quantity to study is the number
0p,a(n) of binomial coefficients (), for 0 < m < n, with v,(()) = «.

n
m
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Carlitz |3l Equations (1.7)—(1.9)] gave a recurrence involving 6, o(n) and a
secondary quantity ¢, o(n) defined as the number of integers m in the range
0 <m < n such that v,((m+1)(")) = a. Namely,

m

Opalpn+d) = (d+1)0pa(n) + (p—d—1)¢Ypa—1(n—1)
(d+1)9p’a(n) —l—(p—d— 1)¢p,a—1(n_ 1) if0<d<p-2
p'(/)p7a—1(n) ifd= p— 1.

As we will see in Section [3| this recurrence comes close to giving a matrix gen-
eralization of Fine’s theorem, but it is not of the right form.

Nonetheless, Carlitz’s recurrence can be used to obtain formulas for 6, . (n).
Let ng - - - nyng be the standard base-p representation of n. For o = 1, Carlitz [3,
Equation (2.5)] showed

Yp.alpn +d) = {

{—1

Op1(n) = Z(W—i—l)(néﬂ +1) - (nig2 +D)nipi(p—ni —1)(ni—1+1) - - (no+1).
i=0

Dividing by 0, 0(n) = (ng+1)--- (no + 1) gives

{—1

Op.1(n) _ Z nign  p—ni—1
Opo(n) =i+l ni+1
This equation is our first indication that expressions for Zp"g((s)) can be simpler
P,

than expressions for 6, ,(n) alone. In particular, z”’;E:g is a polynomial in the
P

variables |n|,, for words w € {0,1,...,p—1}* of length 2. For p = 2 we obtain
Inly 1
O2,1(n) = 21" §|n|10,

which was obtained by Howard [7, Equation (2.4)] and by Davis and Webb [4]
Theorem 7]. For p = 3 we have

1 4 1
031 (n) = 2"l 3l (|n|10 + Z'nhl + g\n|2o + 3|n21) ;

which also follows from the work of Huard, Spearman, and Williams [8]. For
p =5 we have

3 1 1
05,1(n) = 2/ 3Inl24lnls 5lnla (2|n|10 + Z\"|11 + §|”\12 + §|n|13
+8\| + |n| +4|\ +1||
—|n n —|Mn —|n
3 20 21 9 22 6 23
+ 3|nlz0 + g|n| + 1|n| + 3 [n|
30 ) 31 9 32 16 33
16

5 40 5 41 15 42 5 43 |»

and so on.
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2 Formulas for arbitrary prime powers

We have seen that zz’;gg prz((;l))

in general. Barat and Grabner [2, §3] showed this implicitly while studying the

is a polynomial in |n|,. In fact this is true for

asymptotic behavior of 22;0 Op.a(n).
Rowland [12] gave an algorithm for computing a polynomial expression for

%. For p = 2 one computes

1 1 1
f,2(n) = 2I"h (—8|n|10 + |n|100 + 1|n|110 + 8”&0)

(which was obtained by Howard [7, Equation (2.5)] and by Huard, Spearman,
and Williams [0, Theorem CJ),

03(n) = 2I"h i|7”L|10 - 1|n|100 - 1|n|110 + 2|nf1000 + 1|n|1o1o + 1\7”L|1100
’ 24 2 8 2 2

) 1110 16 10 2 10 100 ] 10 110 ) 10 |»
and so on. The number of nonzero terms in the polynomial 022"7L‘(?) for a« =

0,1,2,... is sequence |A275012 [I1]:
1,1,4,11,29, 69, 174, 413, 995, 2364, 5581, 13082, 30600, 71111, 164660, 379682, . . .

The algorithm for computing these polynomials also establishes bounds on
their total degree and on the length of words that appear.

Theorem 2 (Rowland [12]). Let p be a prime, and let o > 0. Then Z’;z((z)) is

given by a polynomial of degree o in |n|, for words w satisfying |w| < a+ 1.

However, the algorithm is not particularly fast, as it constructs a polynomial
by summing over certain sets of integer partitions. Spiegelhofer and Wallner [14]
produced a faster algorithm by developing a better understanding of the struc-
ture of this polynomial. In particular, they showed that the polynomial repre-

sentation of Z”“S((Z)) is unique, as long as words of the form Ow and w(p — 1)
P,

are not used. Therefore one can talk about the coefficient of a given monomial.
Moreover, this coefficient can be read off from a certain power series. One can see
evidence of this by looking at the coefficient of |n|1o in the expressions computed

02,(1(77,)

for IR

. The sequence of coefficients is

1 1 1 1 1 1
T27 87247 6471607 3847
These are the coefficients in the power series for log(1 + ) at « = 0.
The polynomial

Tp(n,z) := i 2o () = Z Op.a(n)z”

m=0 a>0


https://oeis.org/A275012
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is a central object in Spiegelhofer and Wallner’s result. Let

Il L Tp(valp(w), x)
Tolwm) = el (w))

where val,(w) is the integer obtained by reading w in base p. Define the rational
function

rp(w, ) = Tp(w,x)fﬂ(wug,x)
L Tp(wR,x)Tp(wL,x)’

where the left and right truncations of a word are defined for ¢ > 0, ¢ € {1,...,p—
1}, and d € {0,1,...,p— 1} by

€L, =€ (09 = ¢ (c0fw), = w
€ER=¢€ CrR=¢€ (wd)g = w.

Theorem 3 (Spiegelhofer—Wallner [14]). Let p be a prime, and let o > 0.
Let wy, ..., wy be words of length > 2 on the alphabet {0,1,...,p — 1} that do

not begin with 0 or end with p — 1. Then the coefficient of |n|k! ---|n|km in the

polynomial ‘z,”“g((:)) 1s the coefficient of x® in the power series expansion for
p,

k1 . km

L (logrp (w1, 2) (log 7y (1, 7))

b
ol !

3 Matrix generalizations of Fine’s theorem

Spiegelhofer and Wallner’s polynomial Tj,(n, ) turns out to have a product for-
mula which generalizes Fine’s theorem. Note that the first equation in Carlitz’s
recurrence,

Op.a(pn+d) = (d+1)bpa(n) + (p = d = Dhp,a—1(n — 1),

can be rewritten in terms of T, (n, ) as

0 ifn=20
T d,2) = (d+1)T,(n,
p(pn—l- r)=(d+1) P(n -77) + {(p —d—1) 2ve(n)+1 Tp(n —1,z) ifn>1.

To simplify this equation, let us introduce a secondary polynomial

0 ifn=0
T (n,2) :=
(n,2) {fﬂmﬂiun—Lm ifn>1

so that ¢, o—1(n — 1) is the coefficient of % in T} (n,z). Then we have
Ty(pn+d,z) = (d+ 1) Tp(n,z) + (p — d — 1)T,(n, z).

We are close to being able to write

] < ana [ 0
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for some 2 x 2 matrix M, (d), thereby expressing T},(pn +d, z) and T, (pn +d, =)
in terms of T,(n,z) and T (n, r). Carlitz’s second equation,

(d+ l)ﬁp’a(n) +(p—d- 1)7/)17,04—1(” —1) if0<d<p-2

¢;D,a(pn + d) = {pw%al(n) ifd=p—1,

expresses ¥p o (pn + d) in terms of 6 and . But because the coefficient of z® in

Ty (n,x) is Pp a—1(n — 1) we instead need to express 1 o(pn + d — 1) in terms

of 6 and . The desired equation is
wp,a(pn + d— ]-) = dap,a(n) + (p - d)¢p7a,1(ﬂ - 1)7
which is equivalent to
Ty(pn+d,xz) =dxzTy(n,z) + (p — d) T, (n, x).
Therefore, the matrix we seek is

= )

Theorem 4 (Rowland [13]). Let p be a prime, and let n > 0. Let ng---ning
be the standard base-p representation of n. Then

T3 0n,) = [1.0] 4y ) ) - My () ]

Setting © = 0 gives Fine’s result as a special case. Namely, the definition of
T,(n, ) implies Ty (n,0) = 0, so Equation (1)) becomes

p {pro(pgb + d)} _ [d—g 1p— 3 - 1] [op%(n)] 7

or simply
Opo(pn +d) = (d+1) 0,,0(n).
Moreover, Theorem [4] generalizes naturally to multinomial coefficients. For a
k-tuple m = (mq,ma, ..., my) of non-negative integers, define

totalm :=mq +mo + - +my

and
(total m)!

multm:= ———
m1!m2! mk!

Let ¢, x(n) be the coefficient of 2™ in (1 + = + 22 + --- + 2P~1)*. For each
d € {0,1,...,p — 1}, let M, x(d) be the k x k matrix whose (i,7) entry is
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cpr(p(—1)+d— (i — 1))z~ For example, let p = 5 and k = 3; the ma-
trices M5 3(0),. .., M5 3(4) are

1 18 6 3 19 3 6 18 1
0 15z 10z |, z 18z 6z |, 3z 19z 3z |,
0 1022 1522 0 1522 1022 22 1822 622
10 15 0 15 10 0
6x 18z =z |, 10z 15z O
322 1922 322 622 1822 22

Theorem 5 (Rowland [13]). Let p be a prime, let k > 1, and let n > 0. Let
e = [1 00--- O} be the first standard basis vector in Zk. Let ng---ning be the
standard base-p representation of n. Then

Z et m) — o N (ng) My g(ny) -+ My g(ne)e .

meNP
total m=n

The proof essentially amounts to showing that, for d € {0,1,...,p — 1},
0<i<k-—1,and a > 0, the map 3 defined by

B(m) := ([m/p|, m mod p)

is a bijection from the set

|
A= {meNk‘:totalmanrdi and VP(multm)an(m>}

to the set

k—1
n!
B= c e NF:totale =n — j and v, (multc au(,)j}
JL_J()({ P( ) P (n_])!
x{de{(),l,...,pl}k:totaldpj+di}>.

The following lemma implies that if m € A then 3(m) € B.

Lemma 6. Let p be a prime, k > 1, n>0,d € {0,1,...,p—1}, and 0 < i <
k —1. Let m € N¥ with totalm = pn +d —i. Let j = n — total|m/p|. Then
totalm mod p) =pj+d—1i,0<j<k-—1, and

n!

(pn + d)! ,

Vp| —————— | + vp(multm) = vy | — | + v, (mult|m + 7.

(D) + tmttm) = v, () vy i)+
We conclude by mentioning a connection to regular sequences. A sequence
s(n)p>0, with entries in some field, is p-regular if the vector space generated
by the set of subsequences {s(p°n + i)n>0 : € > 0 and 0 < i < p® — 1} is finite-
dimensional. For example, the sequence (6, 0(n)),>0 is a p-regular sequence of
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integers [1I, Example 14]. It follows from Theorem [5| and [I, Theorem 2.2] that
the sequence of polynomials

Z I,Vp(mult m)

meNF
total m=n n>0

is p-regular for each k.
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