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Abstract. The study of arithmetic properties of binomial coefficients
has a rich history. A recurring theme is that p-adic statistics reflect the
base-p representations of integers. We discuss many results expressing
the number of binomial coefficients

(
n
m

)
with a given p-adic valuation

in terms of the number of occurrences of a given word in the base-p
representation of n, beginning with a result of Glaisher from 1899, up
through recent results by Spiegelhofer–Wallner and Rowland.
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1 Valuations of binomial coefficients

In 1852, Kummer [10, pages 115–116] determined the exact power of a prime p
that divides a binomial coefficient

(
n
m

)
. To state this result, let νp(n) denote the

p-adic valuation of n, that is, the exponent of the highest power of p dividing n.

Theorem 1 (Kummer). Let p be a prime, and let n and m be integers with
0 ≤ m ≤ n. Then νp(

(
n
m

)
) is the number of carries involved in adding m to n−m

in base p.

Kummer’s theorem is the first of many results to express arithmetic informa-
tion about binomial coefficients in terms of base-p representations of integers.

Glaisher [6, §14] seems to have been the first to count binomial coefficients
satisfying a given congruence condition. He showed that the number of integers
m in the range 0 ≤ m ≤ n such that

(
n
m

)
is odd is 2|n|1 . Here |n|1 is the number

of 1s in the standard base-2 representation of n.
Half a century later, Glaisher’s result was generalized to an arbitrary prime

by Fine [5, Theorem 2]. For a prime p and an integer n ≥ 0, let θp,0(n) be the
number of integers m in the range 0 ≤ m ≤ n such that

(
n
m

)
6≡ 0 mod p. Let

|n|w be the number of occurrences of the word w in the base-p representation of
n. Fine showed that

θp,0(n) =

p−1∏
d=0

(d+ 1)|n|d .

Since the publication of Fine’s result, many authors have been interested in
generalizations to higher powers of p. A natural quantity to study is the number
θp,α(n) of binomial coefficients

(
n
m

)
, for 0 ≤ m ≤ n, with νp(

(
n
m

)
) = α.
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Carlitz [3, Equations (1.7)–(1.9)] gave a recurrence involving θp,α(n) and a
secondary quantity ψp,α(n) defined as the number of integers m in the range
0 ≤ m ≤ n such that νp((m+ 1)

(
n
m

)
) = α. Namely,

θp,α(pn+ d) = (d+ 1)θp,α(n) + (p− d− 1)ψp,α−1(n− 1)

ψp,α(pn+ d) =

{
(d+ 1)θp,α(n) + (p− d− 1)ψp,α−1(n− 1) if 0 ≤ d ≤ p− 2

pψp,α−1(n) if d = p− 1.

As we will see in Section 3, this recurrence comes close to giving a matrix gen-
eralization of Fine’s theorem, but it is not of the right form.

Nonetheless, Carlitz’s recurrence can be used to obtain formulas for θp,α(n).
Let n` · · ·n1n0 be the standard base-p representation of n. For α = 1, Carlitz [3,
Equation (2.5)] showed

θp,1(n) =

`−1∑
i=0

(n`+1)(n`−1+1) · · · (ni+2+1)ni+1(p−ni−1)(ni−1+1) · · · (n0+1).

Dividing by θp,0(n) = (n` + 1) · · · (n0 + 1) gives

θp,1(n)

θp,0(n)
=

`−1∑
i=0

ni+1

ni+1 + 1
· p− ni − 1

ni + 1
.

This equation is our first indication that expressions for
θp,α(n)
θp,0(n)

can be simpler

than expressions for θp,α(n) alone. In particular,
θp,1(n)
θp,0(n)

is a polynomial in the

variables |n|w for words w ∈ {0, 1, . . . , p− 1}∗ of length 2. For p = 2 we obtain

θ2,1(n) = 2|n|1 · 1

2
|n|10,

which was obtained by Howard [7, Equation (2.4)] and by Davis and Webb [4,
Theorem 7]. For p = 3 we have

θ3,1(n) = 2|n|13|n|2
(
|n|10 +

1

4
|n|11 +

4

3
|n|20 +

1

3
|n|21

)
,

which also follows from the work of Huard, Spearman, and Williams [8]. For
p = 5 we have

θ5,1(n) = 2|n|13|n|24|n|35|n|4
(

2|n|10 +
3

4
|n|11 +

1

3
|n|12 +

1

8
|n|13

+
8

3
|n|20 + |n|21 +

4

9
|n|22 +

1

6
|n|23

+ 3|n|30 +
9

8
|n|31 +

1

2
|n|32 +

3

16
|n|33

+
16

5
|n|40 +

6

5
|n|41 +

8

15
|n|42 +

1

5
|n|43

)
,

and so on.
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2 Formulas for arbitrary prime powers

We have seen that
θp,1(n)
θp,0(n)

is a polynomial in |n|w. In fact this is true for
θp,α(n)
θp,0(n)

in general. Barat and Grabner [2, §3] showed this implicitly while studying the

asymptotic behavior of
∑N
n=0 θp,α(n).

Rowland [12] gave an algorithm for computing a polynomial expression for
θp,α(n)
θp,0(n)

. For p = 2 one computes

θ2,2(n) = 2|n|1
(
−1

8
|n|10 + |n|100 +

1

4
|n|110 +

1

8
|n|210

)
(which was obtained by Howard [7, Equation (2.5)] and by Huard, Spearman,
and Williams [9, Theorem C]),

θ2,3(n) = 2|n|1
(

1

24
|n|10 −

1

2
|n|100 −

1

8
|n|110 + 2|n|1000 +

1

2
|n|1010 +

1

2
|n|1100

+
1

8
|n|1110 −

1

16
|n|210 +

1

2
|n|10|n|100 +

1

8
|n|10|n|110 +

1

48
|n|310

)
,

and so on. The number of nonzero terms in the polynomial
θ2,α(n)

2|n|1 for α =
0, 1, 2, . . . is sequence A275012 [11]:

1, 1, 4, 11, 29, 69, 174, 413, 995, 2364, 5581, 13082, 30600, 71111, 164660, 379682, . . .

The algorithm for computing these polynomials also establishes bounds on
their total degree and on the length of words that appear.

Theorem 2 (Rowland [12]). Let p be a prime, and let α ≥ 0. Then
θp,α(n)
θp,0(n)

is

given by a polynomial of degree α in |n|w for words w satisfying |w| ≤ α+ 1.

However, the algorithm is not particularly fast, as it constructs a polynomial
by summing over certain sets of integer partitions. Spiegelhofer and Wallner [14]
produced a faster algorithm by developing a better understanding of the struc-
ture of this polynomial. In particular, they showed that the polynomial repre-

sentation of
θp,α(n)
θp,0(n)

is unique, as long as words of the form 0w and w(p − 1)

are not used. Therefore one can talk about the coefficient of a given monomial.
Moreover, this coefficient can be read off from a certain power series. One can see
evidence of this by looking at the coefficient of |n|10 in the expressions computed

for
θ2,α(n)

2|n|1 . The sequence of coefficients is

0,
1

2
, −1

8
,

1

24
, − 1

64
,

1

160
, − 1

384
, . . . .

These are the coefficients in the power series for log(1 + x
2 ) at x = 0.

The polynomial

Tp(n, x) :=

n∑
m=0

xνp((
n
m)) =

∑
α≥0

θp,α(n)xα

https://oeis.org/A275012
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is a central object in Spiegelhofer and Wallner’s result. Let

T p(w, x) :=
Tp(valp(w), x)

θp,0(valp(w))
,

where valp(w) is the integer obtained by reading w in base p. Define the rational
function

rp(w, x) :=
T p(w, x)T p(wLR, x)

T p(wR, x)T p(wL, x)
,

where the left and right truncations of a word are defined for ` ≥ 0, c ∈ {1, . . . , p−
1}, and d ∈ {0, 1, . . . , p− 1} by

εL = ε (c0`)L = ε (c0`w)L = w
εR = ε cR = ε (wd)R = w.

Theorem 3 (Spiegelhofer–Wallner [14]). Let p be a prime, and let α ≥ 0.
Let w1, . . . , wm be words of length ≥ 2 on the alphabet {0, 1, . . . , p − 1} that do
not begin with 0 or end with p− 1. Then the coefficient of |n|k1w1

· · · |n|kmwm in the

polynomial
θp,α(n)
θp,0(n)

is the coefficient of xα in the power series expansion for

1

k1!
(log rp(w1, x))k1 · · · 1

km!
(log rp(wm, x))km .

3 Matrix generalizations of Fine’s theorem

Spiegelhofer and Wallner’s polynomial Tp(n, x) turns out to have a product for-
mula which generalizes Fine’s theorem. Note that the first equation in Carlitz’s
recurrence,

θp,α(pn+ d) = (d+ 1)θp,α(n) + (p− d− 1)ψp,α−1(n− 1),

can be rewritten in terms of Tp(n, x) as

Tp(pn+ d, x) = (d+ 1)Tp(n, x) +

{
0 if n = 0

(p− d− 1)xνp(n)+1 Tp(n− 1, x) if n ≥ 1.

To simplify this equation, let us introduce a secondary polynomial

T ′p(n, x) :=

{
0 if n = 0

xνp(n)+1 Tp(n− 1, x) if n ≥ 1,

so that ψp,α−1(n− 1) is the coefficient of xα in T ′p(n, x). Then we have

Tp(pn+ d, x) = (d+ 1)Tp(n, x) + (p− d− 1)T ′p(n, x).

We are close to being able to write[
Tp(pn+ d, x)
T ′p(pn+ d, x)

]
= Mp(d)

[
Tp(n, x)
T ′p(n, x)

]
(1)
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for some 2× 2 matrix Mp(d), thereby expressing Tp(pn+ d, x) and T ′p(pn+ d, x)
in terms of Tp(n, x) and T ′p(n, x). Carlitz’s second equation,

ψp,α(pn+ d) =

{
(d+ 1)θp,α(n) + (p− d− 1)ψp,α−1(n− 1) if 0 ≤ d ≤ p− 2

pψp,α−1(n) if d = p− 1,

expresses ψp,α(pn+ d) in terms of θ and ψ. But because the coefficient of xα in
T ′p(n, x) is ψp,α−1(n − 1) we instead need to express ψp,α(pn + d − 1) in terms
of θ and ψ. The desired equation is

ψp,α(pn+ d− 1) = dθp,α(n) + (p− d)ψp,α−1(n− 1),

which is equivalent to

T ′p(pn+ d, x) = d xTp(n, x) + (p− d)xT ′p(n, x).

Therefore, the matrix we seek is

Mp(d) =

[
d+ 1 p− d− 1
d x (p− d)x

]
.

Theorem 4 (Rowland [13]). Let p be a prime, and let n ≥ 0. Let n` · · ·n1n0
be the standard base-p representation of n. Then

Tp(n, x) =
[
1 0
]
Mp(n0)Mp(n1) · · · Mp(n`)

[
1
0

]
.

Setting x = 0 gives Fine’s result as a special case. Namely, the definition of
T ′p(n, x) implies T ′p(n, 0) = 0, so Equation (1) becomes[

θp,0(pn+ d)
0

]
=

[
d+ 1 p− d− 1

0 0

] [
θp,0(n)

0

]
,

or simply

θp,0(pn+ d) = (d+ 1) θp,0(n).

Moreover, Theorem 4 generalizes naturally to multinomial coefficients. For a
k-tuple m = (m1,m2, . . . ,mk) of non-negative integers, define

totalm := m1 +m2 + · · ·+mk

and

multm :=
(totalm)!

m1!m2! · · · mk!
.

Let cp,k(n) be the coefficient of xn in (1 + x + x2 + · · · + xp−1)k. For each
d ∈ {0, 1, . . . , p − 1}, let Mp,k(d) be the k × k matrix whose (i, j) entry is
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cp,k(p (j − 1) + d − (i − 1))xi−1. For example, let p = 5 and k = 3; the ma-
trices M5,3(0), . . . ,M5,3(4) are1 18 6

0 15x 10x
0 10x2 15x2

 ,
3 19 3
x 18x 6x
0 15x2 10x2

 ,
 6 18 1

3x 19x 3x
x2 18x2 6x2

 ,
 10 15 0

6x 18x x
3x2 19x2 3x2

 ,
 15 10 0

10x 15x 0
6x2 18x2 x2

 .
Theorem 5 (Rowland [13]). Let p be a prime, let k ≥ 1, and let n ≥ 0. Let
e =

[
1 0 0 · · · 0

]
be the first standard basis vector in Zk. Let n` · · ·n1n0 be the

standard base-p representation of n. Then∑
m∈Nk

totalm=n

xνp(multm) = eMp,k(n0)Mp,k(n1) · · · Mp,k(n`) e
>.

The proof essentially amounts to showing that, for d ∈ {0, 1, . . . , p − 1},
0 ≤ i ≤ k − 1, and α ≥ 0, the map β defined by

β(m) := (bm/pc,m mod p)

is a bijection from the set

A =

{
m ∈ Nk : totalm = pn+ d− i and νp(multm) = α− νp

(
(pn+ d)!

(pn+ d− i)!

)}
to the set

B =

k−1⋃
j=0

({
c ∈ Nk : total c = n− j and νp(mult c) = α− νp

(
n!

(n− j)!

)
− j
}

×
{
d ∈ {0, 1, . . . , p− 1}k : totald = pj + d− i

})
.

The following lemma implies that if m ∈ A then β(m) ∈ B.

Lemma 6. Let p be a prime, k ≥ 1, n ≥ 0, d ∈ {0, 1, . . . , p − 1}, and 0 ≤ i ≤
k − 1. Let m ∈ Nk with totalm = pn + d − i. Let j = n − totalbm/pc. Then
total(m mod p) = pj + d− i, 0 ≤ j ≤ k − 1, and

νp

(
(pn+ d)!

(pn+ d− i)!

)
+ νp(multm) = νp

(
n!

(n− j)!

)
+ νp(multbm/pc) + j.

We conclude by mentioning a connection to regular sequences. A sequence
s(n)n≥0, with entries in some field, is p-regular if the vector space generated
by the set of subsequences {s(pen + i)n≥0 : e ≥ 0 and 0 ≤ i ≤ pe − 1} is finite-
dimensional. For example, the sequence (θp,0(n))n≥0 is a p-regular sequence of
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integers [1, Example 14]. It follows from Theorem 5 and [1, Theorem 2.2] that
the sequence of polynomials ∑

m∈Nk
totalm=n

xνp(multm)


n≥0

is p-regular for each k.
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