
AN ELEMENTARY PROOF OF BRIDY’S THEOREM

ERIC ROWLAND, MANON STIPULANTI, AND REEM YASSAWI

Abstract. Christol’s theorem states that a power series with coefficients in

a finite field is algebraic if and only if its coefficient sequence is automatic. A

natural question is how the size of a polynomial describing such a sequence
relates to the size of an automaton describing the same sequence. Bridy used

tools from algebraic geometry to bound the size of the minimal automaton for

a sequence, given its minimal polynomial. We produce a new proof of Bridy’s
bound by embedding algebraic sequences as diagonals of rational functions.

1. Introduction

A well-known result of Christol [9, 11] states that a sequence a(n)n≥0 of ele-
ments in the finite field Fq is algebraic if and only if it is q-automatic. That is, its
generating series F =

∑
n≥0 a(n)x

n satisfies P (x, F ) = 0 for some nonzero polyno-

mial P ∈ Fq[x, y] precisely when there exists a finite automaton that outputs a(n)
when fed the standard base-q representation of n. Such sequences can therefore
be represented both by polynomials and by automata. A natural question is how
the size of the automaton, measured by the number of states, depends on the size
of the polynomial, measured by its height h := degx P and degree d := degy P .
Using tools from algebraic geometry, Bridy [7] showed that the number of states is
in (1 + o(1))qhd as q, h, or d tends to infinity.

In this paper, we give a new proof of Bridy’s theorem using tools from linear
algebra and results about constant-recursive sequences. Quite apart from the in-
terest of providing an elementary proof of Bridy’s result, our approach generalizes
to settings that are not accessible to algebraic geometry. An analogue of Chris-
tol’s theorem has been established for sequences of p-adic integers [10, 13]. In a
subsequent paper [22], we use our approach to bound the number of states in the
minimal automaton for an algebraic sequence of p-adic integers reduced modulo pα.

All automata in this article read representations of integers starting with the least
significant digit; see Section 3. We will be interested in sequences with polynomial
representations as follows.

Definition. Let P ∈ Fq[x, y] such that P (0, 0) = 0 and ∂P
∂y (0, 0) ̸= 0. The Fursten-

berg series associated with P is the unique power series F ∈ FqJxK satisfying
F (0) = 0 and P (x, F ) = 0.

The condition ∂P
∂y (0, 0) ̸= 0 is a statement about the coefficient of x0y1. It

guarantees that d ≥ 1. If h = 0, then F is the trivial 0 series, so we may assume
h ≥ 1. Along with the condition P (0, 0) = 0, a version of the implicit function
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theorem guarantees the uniqueness of F [16, Theorem 2.9]. Given a polynomial P
which does not satisfy the conditions P (0, 0) = 0 and ∂P

∂y (0, 0) ̸= 0, and a power

series F satisfying P (x, F ) = 0, there is a technique to obtain a polynomial P̄ and a
“shift” F̄ of F such that F̄ is the Furstenberg series associated with P̄ . For example,
see [1, Lemma 6.2] for details. The results in this article are stated for Furstenberg
series, but this technique can be used to extend them to general algebraic series.

Our main result is Theorem 1, whose statement needs a few definitions. Define
parts(n) to be the set of all integer partitions of n. We are interested in the
lcm of an integer partition, since it will arise as lcm(degR1, . . . ,degRk) where
R1, . . . , Rk are the irreducible factors of a polynomial of fixed degree n. The Landau
function g(n) outputs the maximum value of lcm(σ) over all integer partitions
σ ∈ parts(n) [23, A000793]. For example, g(5) is the maximum value among lcm(5),
lcm(4, 1), lcm(3, 2), lcm(3, 1, 1), lcm(2, 2, 1), lcm(2, 1, 1, 1), and lcm(1, 1, 1, 1, 1), so
we have g(5) = 6. The Landau function also appeared in Bridy’s analysis. We will
use a variant of the Landau function that gives a better bound. Define

L(l,m, n) := max
1≤i≤l
1≤j≤m
1≤k≤n

max
σ1∈parts(i)
σ2∈parts(j)
σ3∈parts(k)

lcm(lcm(σ1), lcm(σ2), lcm(σ3)).

Theorem 1. Let F =
∑

n≥0 a(n)x
n ∈ FqJxK \ {0} be the Furstenberg series asso-

ciated with a polynomial P ∈ Fq[x, y] of height h and degree d. Then the minimal
q-automaton that generates a(n)n≥0 has size at most

qhd + q(h−1)(d−1)L(h, d, d) +
⌊
logq h

⌋
+
⌈
logq max(h, d− 1)

⌉
+ 3.

In Section 2, we give numeric evidence that the bound in Theorem 1 is asymp-
totically sharp. As a corollary of Theorem 1, we obtain Bridy’s theorem [7].

Theorem 2. Let F =
∑

n≥0 a(n)x
n ∈ FqJxK be the Furstenberg series associated

with a polynomial P ∈ Fq[x, y] of height h and degree d. Then the size of the
minimal q-automaton generating a(n)n≥0 is in (1 + o(1))qhd as any of q, h, or d
tends to infinity and the others remain constant.

Bridy [7] also showed that the number of states is in (1 + o(1))qh+d+g−1 as any
of q, h, d, g tends to infinity, where g is the genus of P . Since the genus satisfies
g ≤ (h− 1)(d− 1), Bridy obtains the bound (1+ o(1))qhd for the number of states.
Let G be the number of interior points in the Newton polygon of P . We have g ≤ G
by Baker’s theorem [5], with equality generically. In our setting, one could use G to
obtain more refined bounds than in Theorem 1, analogous to Bridy’s bound. This
approach is discussed briefly in [3, Section 6].

Broadly, the proof of Theorem 1 consists of two steps. First, in Section 3, we
represent states in the automaton with bivariate polynomials, and we establish basic
properties of a spaceW of bivariate polynomials containing most of the automaton’s
states. Namely, W contains all states except those in the orbit orbλ0,0

(S0) of the

initial state S0 under the linear transformation λ0,0(S) := Λ0,0

(
SQq−1

)
, where Λ0,0

is a Cartier operator and Q = P/y. The space W has size qhd, giving the main
term in Theorem 1. This first step is elementary and yields an initial upper bound
of qhd + |orbλ0,0(S0)| for the number of states.

The second step is considerably more involved. We show that the size of an orbit
under λ0,0 is small, giving the lower-order terms in Theorem 1. The key idea is that
one can bound the orbit size under λ0,0 in terms of the orbit sizes under restrictions
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of λ0,0 to four subspaces. One subspace has size q(h−1)(d−1). On the other three, the
operator λ0,0 behaves like linear transformations λ0(S) := Λ0

(
SRq−1

)
on univariate

polynomials for certain Laurent polynomials R, where Λ0 is a Cartier operator. We
show how to bound the orbit size under λ0 in terms of the factorization of R, using
the period length of the coefficient sequence of the series 1

R . Surprisingly, this
period length is not dependent on q; this appears starting in Theorem 23.

Our proof of Theorem 1 begins by converting the representation of the series
F by a polynomial P to a representation as the diagonal of a rational function.
More generally, in Theorem 35 we use the same two steps to bound the automaton
size for the diagonal of a rational function in two variables. For more than two
variables, new techniques would be needed to further extend the second step. The
current techniques would only give an analogue of Corollary 10.

This analogue is already included in recent work by Adamczewski, Bostan, and
Caruso [2], who bound the dimension of a vector space containing the kernel (see
Section 3) of a multidimensional algebraic sequence, generalizing a result of Bostan,
Caruso, Christol, and Dumas [6] for one-dimensional algebraic sequences. These
papers also use diagonals, and the argument fundamentally follows the lines of a
multivariate version of Section 3 below. However, like Bridy, the authors of [2] give
a more refined bound in terms of the genus of the associated surface. They also
give several applications of their bound, establishing a polynomial bound on the
algebraic degree of reductions modulo p of diagonals of multivariate algebraic power
series, answering a question of Deligne [12], and improving Harase’s bound [15] on
the degree of the Hadamard product of two algebraic power series.

In Section 3, we lay the groundwork and obtain a preliminary, coarser bound
on the size of the automaton, in Corollary 11. In Section 4, we study the linear
structure of the operator λ0,0 and show in Proposition 13 that it can be emulated
by univariate operators λ0 on certain subspaces of Fq[z]. In Section 5, we bound the
orbit size of a polynomial under λ0, leading to Theorem 30. Finally in Section 6, we
tie these results together to obtain Theorem 1 and an analogous result for diagonals
of rational functions. In Section 7, we give some intriguing conjectures about orbits
under λ0 that were discovered in the process of proving Theorem 1 and ultimately
not used.

2. Numeric evidence for sharpness

In this section, we systematically find Furstenberg series, represented by poly-
nomials P , for which the corresponding automata are large. The computations are
performed with the Mathematica package IntegerSequences [18, 19].

For fixed values of q, h, and d, we generate all polynomials P ∈ Fq[x, y] with
height h and degree d that satisfy the conditions in the definition of a Furstenberg
series. We also require that the coefficient of x0y1 in P is 1, since P and cP (where
c ̸= 0) define the same series F and produce the same automaton. Then, for each
P , we use the construction described in Section 3 below to compute an automaton
generating the coefficient sequence of its associated Furstenberg series. In general,
this construction does not produce a minimal automaton. Minimizing is costly,
so to expand the feasible search space we do not minimize automata at this step.
Instead, we determine the size of each unminimized automaton, select one of the
polynomials P that maximizes this size, and minimize its automaton.
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Table 1 in the appendix lists the maximum unminimized automaton size for
several values of q, h, and d, along with one polynomial that achieves this size
and the value of the bound in Theorem 1. For each polynomial in Table 1, the
automaton size drops by at most 1 during minimization. This justifies the decision
to not minimize all automata initially. For d = 1 (that is, rational series), Bridy
showed that the bound (1 + o(1))qhd is sharp by constructing polynomials P from
univariate primitive polynomials [7, Proposition 3.14]. Table 1 suggests this bound
is also sharp for d ≥ 2. For d = 2, Figure 2 in the appendix shows the distribution
of unminimized automaton sizes for some values of q and h by plotting the number
of polynomials with each size.

Most of the article is concerned with bounding the orbit sizes of polynomials
under the operator λ0,0. This will yield the terms other than qhd in Theorem 1.
Table 2 lists the maximum orbit size under λ0,0 for several values of q, h, and d.

Whereas the polynomials in Table 1 produce automata close to the upper bound,
some algebraic sequences that arise in combinatorics, when reduced modulo p, are
generated by rather small automata. For example, let C(n) be the nth Catalan
number [23, A000108]. Its generating series F = 1 + x + 2x2 + 5x3 + · · · satisfies
xF 2 − F + 1 = 0, so h = 1 and d = 2. Burns [8, Section 4] gave an explicit
construction for an automaton that generates (C(n) mod p)n≥0. This automaton
has only p+3 states, compared to the bound p2+L(1, 2, 2)+3 = p2+5 in Theorem 1.

3. The vector space of possible states

Christol’s theorem implies that an algebraic sequence of elements in Fq is q-
automatic. In this section, we establish a correspondence between states of an
automaton generating such a sequence and polynomials in a finite-dimensional Fq-
vector space. We do this by converting states in the automaton first to sequences,
then to power series, and finally to polynomials. This correspondence provides the
foundation for the rest of the article, and we use it to give a preliminary upper
bound on the number of states in Corollary 11.

We assume the reader is familiar with deterministic finite automata with out-
put. See [4] for a comprehensive treatment and [20] for a short introduction. An
automaton with input alphabet {0, 1, . . . , q−1} generates the q-automatic sequence
a(n)n≥0, where a(n) is the output of the automaton when fed the standard base-q
representation of n, starting with the least significant digit. In general, automata
are sensitive to leading 0s; that is, the output changes when fed a nonstandard rep-
resentation of n. One can always produce an automaton without this drawback [4,
Theorem 5.2.3], although the number of states may increase.

Example 3. The two automata

0

1

0

1

0

1

1

1

0

0

1

0

1

1

0

1

0

1 1

0

0

generate the same 2-automatic sequence 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, . . . . The
behavior of the first automaton is affected by leading 0s; for example, feeding 11
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into this automaton produces the output 0, whereas the input 011 produces the
output 1. The behavior of the second automaton is not affected by leading 0s, and
in fact this is the smallest automaton with this property for this sequence.

Given a q-automatic sequence a(n)n≥0, we refer to the smallest automaton that
generates a(n)n≥0 and that is not affected by leading 0s as its minimal automaton.
Theorem 1 gives an upper bound on the number of states in the minimal automaton.
Theorem 1 also gives an upper bound on the size of the q-kernel of a(n)n≥0, defined
as

kerq(a(n)n≥0) := {a(qen+ r)n≥0 : e ≥ 0 and 0 ≤ r ≤ qe − 1}.
A sequence is q-automatic if and only if its q-kernel is finite; this is known as
Eilenberg’s theorem. Moreover, the states of the minimal automaton are in bijection
with the elements of the q-kernel.

We then represent kernel sequences a(qen + r)n≥0 by their generating series∑
n≥0 a(q

en + r)xn. Let FqJxK and FqJx, yK denote the sets of univariate and bi-

variate power series with coefficients in Fq. Analogously, Fq[x] and Fq[x, y] denote
sets of polynomials. Elements of the q-kernel (and therefore states in the minimal
automaton) can be accessed by applying the following operators.

Definition. Let n ∈ Z. For each r ∈ {0, 1, . . . , q − 1}, define the Cartier operator
Λr on the monomial xn by

Λr(x
n) =

{
x

n−r
q if n ≡ r mod q

0 otherwise.

Then extend Λr linearly to polynomials (as well as to Laurent polynomials and
Laurent series) in x with coefficients in Fq. In particular, for polynomials we have

Λr

(
N∑

n=0

a(n)xn

)
=

⌊N/q⌋∑
n=0

a(qn+ r)xn.

Similarly, for m,n ∈ Z and r, s ∈ {0, 1, . . . , q − 1}, define the bivariate Cartier
operator

Λr,s(x
myn) =

{
x

m−r
q y

n−s
q if m ≡ r mod q and n ≡ s mod q

0 otherwise,

and extend Λr,s linearly to bivariate polynomials (as well as to Laurent polynomials
and Laurent series).

The map Λr on FqJxK corresponds to the map a(n)n≥0 7→ a(qn + r)n≥0. An
advantage of representing sequences by power series is that a factor of the form F q

can be pulled out of a Cartier operator, as in the following proposition. We will
use this repeatedly. The univariate case is proved in [4, Lemma 12.2.2] for power
series; the Laurent series and bivariate cases are similar.

Proposition 4. If F and G are Laurent series in x with coefficients in Fq, then
Λr(GF q) = Λr(G)F . Similarly, if F,G ∈ FqJx, yK, then Λr,s(GF q) = Λr,s(G)F .

The final step is to use a theorem of Furstenberg [14] to convert each algebraic
power series

∑
n≥0 a(q

en+ r)xn corresponding to a kernel sequence to the diagonal
of a rational function. Since different rational functions can have the same diagonal,
a given kernel sequence is potentially the diagonal of several rational functions that
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arise, so the resulting automaton is not necessarily minimal. However, the number
of distinct rational functions that arise is an upper bound on the size of the kernel.
Furstenberg’s theorem holds more generally over every field, but we state it for Fq.
The diagonal operator D : FqJx, yK → FqJxK is defined by

D

∑
m≥0

∑
n≥0

a(m,n)xmyn

 =
∑
n≥0

a(n, n)xn.

For a bivariate series or polynomial P , define P (a, b) to be P |x→a,y→b, and similarly
for univariate series; for example, if P = 3x+2y+xy, then P (xy, y) = 3xy+2y+xy2,
∂P
∂y = 2 + x, ∂P

∂y (xy, y) = 2 + xy, and ∂P
∂y (0, 0) = 2.

Recall the definition of a Furstenberg series from the introduction.

Theorem 5 (Furstenberg). Let F ∈ FqJxK be the Furstenberg series associated with
a polynomial P ∈ Fq[x, y]. Then

F = D

(
y ∂P

∂y (xy, y)

P (xy, y)/y

)
.

The conditions P (0, 0) = 0 and ∂P
∂y (0, 0) ̸= 0 guarantee that every monomial in

P (xy, y) is divisible by y and that

(1)
y ∂P

∂y (xy, y)

P (xy, y)/y

has a unique power series expansion.
Now applying a Cartier operator to the diagonal of a rational power series pro-

duces another diagonal of a rational power series, namely

(2) ΛrD
(
S

Q

)
= DΛr,r

(
S

Q

)
= DΛr,r

(
SQq−1

Qq

)
= D

(
Λr,r

(
SQq−1

)
Q

)
,

where the last equality follows from Proposition 4. Since the initial and final rational
series in Equation (2) have the same denominator Q, every sequence in the q-kernel
of a(n)n≥0, and hence every state in the automaton, is the diagonal of a rational
function with denominator Q. Therefore we can represent each state simply by
its numerator, and the map S 7→ Λr,r

(
SQq−1

)
on Fq[x, y] emulates the Cartier

operator Λr on FqJxK. Moreover, the common denominator Q is the denominator
of the rational expression corresponding to a(n)n≥0 itself, which is P (xy, y)/y by
Theorem 5. This is the approach taken elsewhere [13, 1, 21].

However, in this article we shear the bivariate series (1) by replacing x with
xy−1, obtaining

(3)
y ∂P

∂y

P/y

instead. The diagonal of (1) is the y0 row of (3). The latter is significantly more
convenient notationally for obtaining the desired bound. Let Q := P/y be the
denominator. Note that Q is a polynomial in x, but it may be a Laurent polynomial
in y and not a polynomial. This will not cause us trouble, but we mention that, to
expand (3) as a series and get the intended row sequence, we should expand using
the constant term of the denominator Q (since it is the same as the constant term
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of P (xy, y)/y) and not a monomial involving y−1 if present. The series expansion
of (3) is a power series in x but may have terms involving yn with negative n.

In this formulation, the diagonal operator is replaced by the center row operator
C, defined by

C

∑
m≥0

∑
n∈Z

a(m,n)xmyn

 =
∑
m≥0

a(m, 0)xm.

Equation (2) becomes

ΛrC
(
S

Q

)
= CΛr,0

(
S

Q

)
= CΛr,0

(
SQq−1

Qq

)
= C

(
Λr,0

(
SQq−1

)
Q

)
.

Therefore the map S 7→ Λr,0

(
SQq−1

)
on Fq[x, y] emulates the Cartier operator Λr

on FqJxK. We represent each state in the automaton by a polynomial S ∈ Fq[x, y].

The initial state is S0 := y ∂P
∂y , since this is the numerator of the rational series

corresponding to a(n)n≥0. From each state S, upon reading r ∈ {0, 1, . . . , q − 1}
we transition to Λr,0

(
SQq−1

)
. The output assigned to each state S is S(0,0)

Q(0,0) .

Remark 6. If r = 0, then the output assigned to the state S is the same as
the output assigned to Λ0,0

(
SQq−1

)
since the constant term of Qq−1 is 1 by the

assumption ∂P
∂y (0, 0) ̸= 0. Therefore, the constructed automaton is not sensitive to

leading 0s.

We solidify our notation as follows.

Notation. For the remainder of the article, we fix a prime power q and a polynomial
P ∈ Fq[x, y] with height h ≥ 1 and degree d ≥ 1. We assume that P (0, 0) = 0

and ∂P
∂y (0, 0) ̸= 0 so that we obtain the Furstenberg series F ∈ FqJxK given by

Theorem 5. Let Q = P/y. For each r ∈ {0, 1, . . . , q − 1} and each S ∈ Fq[x, y],
define

λr,0(S) := Λr,0

(
SQq−1

)
.

Note that λr,0 depends on Q, even though the notation does not reflect this. Let
W be the Fq-vector space defined by

W :=
〈
xiyj : 0 ≤ i ≤ h− 1 and 0 ≤ j ≤ d− 1

〉
.

We will always use this basis of W . We have dimW = hd, so |W | = qhd.

Example 7. Let q = 3, and consider the polynomial

P = (x2 + x+ 2)y4 + xy3 + (2x+ 1)y2 + (x2 + 1)y + 2x2 + x ∈ F3[x, y]

with height h = 2 and degree d = 4. We will use this polynomial as a running
example throughout the paper. The coefficient sequence a(n)n≥0 of the series F ∈
F3JxK satisfying P (x, F ) = 0 is

0, 2, 0, 2, 0, 2, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 2, 0, 0, 2, 2, 1, 0, 1, . . . .

We have

Q = P/y = (x2 + x+ 2)y3 + xy2 + (2x+ 1)y + x2 + 1 + (2x2 + x)y−1.

The initial state is

S0 = y ∂P
∂y = (x2 + x+ 2)y4 + (x+ 2)y2 + (x2 + 1)y.
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The space W consists of all bivariate polynomials with height at most 1 and degree
at most 3.

In the remainder of this section, we use elementary methods to highlight the
relevance of W , leading us to a preliminary bound on the size of the kernel in
Corollary 11.

Proposition 8 shows that W is closed under λr,0. In particular, even though Q
is possibly a Laurent polynomial, λr,0(S) is a polynomial for each S ∈ W .

Proposition 8. For each r ∈ {0, 1, . . . , q − 1}, we have λr,0(W ) ⊆ W .

Proof. Let c xIyJ be a nonzero monomial in the Laurent polynomial Qq−1. The
height I of this monomial satisfies 0 ≤ I ≤ (q − 1)h, and the degree J satisfies
−(q − 1) ≤ J ≤ (q − 1)(d− 1). To show that λr,0(W ) ⊆ W , by linearity it suffices
to show that if xiyj is an element of the basis of W then Λr,0

(
xiyj · xIyJ

)
∈ W .

One computes

Λr,0

(
xiyj · xIyJ

)
=

{
x

i+I−r
q y

j+J
q if i+ I ≡ r mod q and j + J ≡ 0 mod q

0 otherwise.

In the second case, clearly the monomial 0 belongs to W . In the first case, the
height of this monomial satisfies i+I−r

q ≥ 0. We use the fact that i+I−r
q and j+J

q

are integers. Then

(4) i+I−r
q =

⌊
i+I−r

q

⌋
≤
⌊
(h−1)+(q−1)h−r

q

⌋
=
⌊
qh−r−1

q

⌋
≤ h− 1.

The degree of Λr,0

(
xiyj · xIyJ

)
satisfies j+J

q ≤ (d−1)+(q−1)(d−1)
q = d− 1 and

j+J
q =

⌈
j+J
q

⌉
≥
⌈
0−(q−1)

q

⌉
=
⌈
1
q − 1

⌉
= 0.

Consequently Λr,0

(
xiyj · xIyJ

)
∈ W . □

The initial state y ∂P
∂y has degree at most d. Since elements of W have degree

at most d − 1, the initial state is not necessarily an element of W . However,
the following result shows that most of its images under compositions of λr,0 are
elements of W . A similar result was obtained in [6, Remark 2.6].

Proposition 9. Let S ∈ Fq[x, y] such that degx S ≤ h and degy S ≤ d.

• We have degx λ0,0(S) ≤ h and degy λ0,0(S) ≤ d− 1.
• For each r ∈ {1, . . . , q − 1}, we have λr,0(S) ∈ W .

In particular, every polynomial (λrn,0 ◦ · · · ◦ λr2,0 ◦ λr1,0)(S0), where at least one ri
is not 0, is an element of W .

Proof. For the first statement, we follow the proof of Proposition 8. After setting
r = 0, Equation (4) is replaced with

i+I
q =

⌊
i+I
q

⌋
≤
⌊
h+(q−1)h

q

⌋
=
⌊
qh
q

⌋
= h.

Therefore degx S ≤ h. Similarly, in the case that Λ0,0

(
xiyj · xIyJ

)
is not 0, its

degree satisfies

j+J
q =

⌊
j+J
q

⌋
≤
⌊
d+(q−1)(d−1)

q

⌋
=
⌊
q(d−1)+1

q

⌋
= d− 1.
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For the second statement, we also follow the proof of Proposition 8; Equation (4)
is replaced with

i+I−r
q =

⌊
i+I−r

q

⌋
≤
⌊
h+(q−1)h−r

q

⌋
=
⌊
qh−r

q

⌋
≤ h− 1,

and analogously

j+J
q =

⌊
j+J
q

⌋
≤
⌊
d+(q−1)(d−1)−r

q

⌋
=
⌊
q(d−1)+1−r

q

⌋
≤ d− 1.

The initial state S0 = y ∂P
∂y satisfies degx S0 ≤ h and degy S0 ≤ d. Let r ∈

{1, . . . , q − 1}. Applying both statements, we obtain (λr,0 ◦ λn
0,0)(S0) ∈ W for all

n ≥ 1. Therefore, by Proposition 8, the final statement follows. □

An immediate corollary of Propositions 8 and 9 is the following, since all states
S except the initial state satisfy degx S ≤ h and degy S ≤ d− 1.

Corollary 10. Let F =
∑

n≥0 a(n)x
n ∈ FqJxK be the Furstenberg series associated

with a polynomial P ∈ Fq[x, y] of height h and degree d. Then

|kerq(a(n)n≥0)| ≤ q(h+1)d + 1.

Proposition 9 indicates that we must further study λ0,0 to lower the bound in
Corollary 10. We start to do this next. For a function f : X → X, define the orbit
of S ∈ X under f to be the sequence S, f(S), f2(S), . . . , and let |orbf (S)| be the
number of distinct terms in the orbit.

Corollary 11. Let F =
∑

n≥0 a(n)x
n ∈ FqJxK be the Furstenberg series associated

with a polynomial P ∈ Fq[x, y] of height h and degree d. Then

|kerq(a(n)n≥0)| ≤ qhd + |orbΛ0(F )|.

Proof. Recall that each sequence in kerq(a(n)n≥0) is represented by at least one
polynomial obtained by iteratively applying some sequence of the operators λr,0 to

the initial state S0 = y ∂P
∂y . Applying λ0,0 iteratively to S0 produces |orbλ0,0(S0)|

states, and |orbλ0,0
(S0)| = |orbΛ0

(F )| by definition. By Propositions 8 and 9, all

states that are not in orbλ0,0
(S0) are in W , which has size qhd. □

4. Structure of the linear transformation λ0,0

By Corollary 11, it remains to bound |orbΛ0
(F )|. In this section, we take the

first step toward this goal by identifying univariate operators λ0 that emulate λ0,0

on three subspaces. The main result is Proposition 13.
We continue to use the notation h, d, P , Q, W established in the previous

section. As we saw with regard to Proposition 9, the elements of orbλ0,0(S0) do not
necessarily belong to W . However, they do belong to the slightly larger space

V :=
〈
xiyj : 0 ≤ i ≤ h and 0 ≤ j ≤ d− 1

〉
.

We define three subspaces of V , which we label suggestively using ℓ (left), r (right),
and t (top):

Vℓ =
〈
x0yj : 0 ≤ j ≤ d− 1

〉
Vr =

〈
xhyj : 0 ≤ j ≤ d− 1

〉
Vt =

〈
xiyd−1 : 0 ≤ i ≤ h

〉
.
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We also define the interior of V to be

(5) V ◦ =
〈
xiyj : 1 ≤ i ≤ h− 1 and 0 ≤ j ≤ d− 2

〉
.

Note that, despite the name “interior”, the basis of V ◦ contains monomials xiy0

along the bottom edge of the rectangle. We have V ◦∩Vℓ = V ◦∩Vr = V ◦∩Vt = {0}.
We will see that the factor q(h−1)(d−1) in Theorem 1 comes from the size of V ◦.

To establish the structure of λ0,0, we introduce three projection-like maps.

Notation. Let πℓ : Fq[x, y] → Fq[y] denote the projection map from Fq[x, y] to
Vℓ. We define πr slightly differently. We have Vr ⊂ xhFq[y], so rather than pro-
jecting to Vr we will dispense with the factor xh. Namely, define πr : Fq[x, y] →
Fq[y] by πr(S) = 1

xh ρ(S), where ρ projects from Fq[x, y] to Vr. Similarly, define

πt : Fq[x, y] → Fq[x] by πt(S) =
1

yd−1 ρ(S), where ρ projects from Fq[x, y] to Vt.

Example 12. As in Example 7, let q = 3 and

Q = (x2 + x+ 2)y3 + xy2 + (2x+ 1)y + x2 + 1 + (2x2 + x)y−1

S0 = (x2 + x+ 2)y4 + (x+ 2)y2 + (x2 + 1)y.

The second state in the orbit of S0 under λ0,0 is

S1 := λ0,0(S0) = Λ0,0(S0Q
3−1) = xy3 + (x2 + x+ 1)y2 + (2x2 + 2)y + x2 + x.

We have S1 ∈ V , which is consistent with Proposition 9. Since h = 2 and d = 4,
the images of S1 under πℓ, πr, πt are

πℓ(S1) = y2 + 2y

πr(S1) = y2 + 2y + 1

πt(S1) = x.

We use these projections in Example 14 below.

Next we define univariate versions of λ0,0. We will use the symbol z to denote
either x or y, depending on which subspace we are considering.

Notation. Let R ∈ z−1Fq[z]. Define λ0 : Fq[z] → Fq[z] by

(6) λ0(S) = Λ0

(
SRq−1

)
.

The next proposition shows that λ0 emulates λ0,0 on the subspaces Vℓ, Vr, and
Vt. Each of the three statements describes a commuting diagram. For example,
the first statement says that the diagram

Fq[x, y] Fq[x, y]

Fq[y] Fq[y]

λ0,0

πℓ πℓ

λ0

commutes. Write

(7) P (x, y) =

h∑
i=0

xiAi(y) =

d∑
j=0

Bj(x)y
j .

Note that A0/y is a polynomial since we assume P (0, 0) = 0 for a Furstenberg
series.

Proposition 13. We have the following.
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(1) Let R = A0/y. For all S ∈ Fq[x, y],

πℓ(λ0,0(S)) = λ0(πℓ(S)).

(2) Let R = Ah/y. For all S ∈ Fq[x, y] with height at most h,

πr(λ0,0(S)) = λ0(πr(S)).

In particular, λ0(πr(S)) is a polynomial despite R not necessarily being a
polynomial.

(3) Let R = Bd. For all S ∈ Fq[x, y] with degree at most d− 1,

πt(λ0,0(S)) = λ0(πt(S)).

In particular, Proposition 13 implies that the Vℓ, Vr, and Vt components of
λ0,0(S) depend only on the respective Vℓ, Vr, and Vt components of S.

Example 14. For the polynomial P in Example 7, we have

A0/y = 2y3 + y + 1

Ah/y = y3 + 1 + 2y−1

Bd = x2 + x+ 2.

With these respective values of R, the second state S1 in the orbit of S0 under λ0,0,
computed in Example 12, satisfies

πℓ(λ0,0(S1)) = y2 + y = λ0(πℓ(S1))

πr(λ0,0(S1)) = y2 + y + 1 = λ0(πr(S1))

πt(λ0,0(S1)) = 2x = λ0(πt(S1)),

confirming the statement of Proposition 13. That is, Proposition 13 reduces the
computation of πℓ(λ0,0(S1)) to the univariate computation of λ0(πℓ(S1)), and sim-
ilarly for πr and πt.

Proof of Proposition 13. First we consider πℓ(λ0,0(S)) for S ∈ Fq[x, y]. Since πℓ

projects onto polynomials in y, we are interested in monomials with height 0 in
λ0,0(S) = Λ0,0

(
SQq−1

)
. A monomial c x0yJ in SQq−1 arises only from the product

of a monomial in S with height 0 together with a monomial in Qq−1 with height 0,
that is, only from the product of a monomial in πℓ(S) together with a monomial in
Qq−1 with height 0. Therefore

πℓ(λ0,0(S)) = πℓ(λ0,0(πℓ(S))).

Additionally, the only way to get a monomial in Qq−1 with height 0 is to take a
product of q−1 monomials in Q = P/y with height 0, namely, monomials in A0/y.
Therefore,

πℓ(λ0,0(S)) = πℓ

(
Λ0,0

(
πℓ(S) · (A0/y)

q−1
))

.

Since πℓ(S) · (A0/y)
q−1 is a univariate polynomial in y, we obtain

πℓ(λ0,0(S)) = Λ0

(
πℓ(S)(A0/y)

q−1
)
= λ0(πℓ(S)).

The argument is similar for πr(λ0,0(S)). Let degx S ≤ h. We have πr(x
IyJ) = 0

if I ̸= h. Since degx Q = h, each monomial c xqhyJ in each of S · Qq−1 and
xhπr(S) · Qq−1 arises only from the product of a monomial in xhπr(S) together
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with a product of q − 1 monomials in Q with height h, namely, monomials in
xhAh/y. Therefore

πr(λ0,0(S)) = πr(λ0,0(x
hπr(S))) = πr

(
Λ0,0

(
xhπr(S) · (xhAh/y)

q−1
))

= πr

(
xhΛ0,0

(
πr(S)(Ah/y)

q−1
))

= Λ0

(
πr(S)(Ah/y)

q−1
)

= λ0(πr(S)),

where in the third equality we use Proposition 4 to rewrite Λ0,0(Gxhq) = xhΛ0,0(G).
Moreover, λ0(πr(S)) is a polynomial since monomials in πr(S) have degree at least
0 and monomials in (Ah/y)

q−1 have degree at least −(q − 1).
Finally, we consider πt(λ0,0(S)) for degy S ≤ d − 1. We have πt(x

IyJ) = 0 if

J ̸= d− 1. Since degy Q = d− 1, each monomial c xIyq(d−1) in each of S ·Qq−1 and

πt(S)y
d−1 ·Qq−1 arises only from the product of a monomial in πt(S)y

d−1 together
with a product of q − 1 monomials in Q with degree d − 1, namely, monomials in
Bdy

d−1. Therefore

πt(λ0,0(S)) = πt(λ0,0(πt(S)y
d−1)) = πt

(
Λ0,0

(
πt(S)y

d−1 · (Bdy
d−1)q−1

))
= πt

(
yd−1Λ0,0

(
πt(S)B

q−1
d

))
= Λ0

(
πt(S)B

q−1
d

)
= λ0(πt(S)). □

4.1. The linear structure of λ0,0. Proposition 13 identifies three subspaces on
which λ0,0 is equivalent to a univariate operator λ0. This proposition is sufficient for
the proof of Theorem 1, which we resume in Section 5. However, in the remainder
of this section we develop additional intuition by using Proposition 13 to refine,
in two steps, the standard basis of V to reveal additional structure of the linear
transformation λ0,0 and its corresponding matrix.

Define

V ◦
ℓ =

〈
x0yj : 1 ≤ j ≤ d− 2

〉
V ◦
r =

〈
xhyj : 0 ≤ j ≤ d− 2

〉
V ◦
t =

〈
xiyd−1 : 1 ≤ i ≤ h− 1

〉
so that

Vℓ =
〈
x0y0

〉
⊕ V ◦

ℓ ⊕
〈
x0yd−1

〉
Vr = V ◦

r ⊕
〈
xhyd−1

〉
Vt =

〈
x0yd−1

〉
⊕ V ◦

t ⊕
〈
xhyd−1

〉
.

The bases of the seven subspaces

(8) V ◦, V ◦
ℓ ,

〈
x0y0

〉
, V ◦

t ,
〈
x0yd−1

〉
, V ◦

r ,
〈
xhyd−1

〉
are disjoint and form a set partition of the basis of V . Geometrically, these bases are
arranged as in Figure 1. We will show in Corollary 17 that, with this decomposition
of V , the matrix corresponding to λ0,0 is block upper triangular. The block sizes
are (h− 1)(d− 1), d− 2, 1, h− 1, 1, d− 1, 1.
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x0y0 x1y0 . . . xh−1y0 xhy0

x0y1 x1y1 . . . xh−1y1 xhy1

...
... . .

. ...
...

x0yd−2 x1yd−2 . . . xh−1yd−2 xhyd−2

x0yd−1 x1yd−1 . . . xh−1yd−1 xhyd−1

Figure 1. Partition of the basis of V into seven sets, which gen-
erate the subspaces

〈
x0yd−1

〉
, V ◦

t ,
〈
xhyd−1

〉
, V ◦

ℓ , V ◦, V ◦
r , and〈

x0y0
〉
.

Example 15. As in Example 14, let h = 2, d = 4, and

P = (x2 + x+ 2)y4 + xy3 + (2x+ 1)y2 + (x2 + 1)y + 2x2 + x ∈ F3[x, y].

The basis of V , ordered according to (8), is(
x1y0, x1y1, x1y2, x0y1, x0y2, x0y0, x1y3, x0y3, x2y0, x2y1, x2y2, x2y3

)
.

With this basis, the operators λ0,0, λ1,0, and λ2,0 are represented by the 12 × 12
matrices

L0,0 =



1 1 1 2 1 2 0 0 2 2 0 0
1 2 1 2 2 2 1 2 1 1 1 2
2 2 1 2 1 2 1 2 1 1 1 1

1 2 1 1
0 1 1 1

1
2 2 1

1
1 1 1 0
2 1 0 1
1 0 0 2

1



L1,0 =



2 2 1 1 1 1 0 0 1 1 1 0
2 2 2 1 0 2 2 1 1 2 1 1
2 2 1 0 0 1 2 2 2 2 1 1
1 1 2 1 1 1 1 2 0 0 0 0
1 0 1 1 1 1 1 1 0 0 0 0
1 0 0 2 0 2 0 0 0 0 0 0

2 1 0 0 0 2
1 1 0 0 0 0

0 0 0 0 0
0 0 0 0
0 0 0 0

0



L2,0 =



1 1 1 0 0 0 0 0 2 2 1 0
2 1 0 0 0 0 1 0 2 2 2 2
1 0 0 0 0 0 2 0 2 2 1 2
1 1 1 2 1 1 2 1 1 1 2 1
1 1 1 2 1 2 1 1 1 0 1 1
2 2 0 1 1 1 0 0 1 0 0 0

1 0 0 0 0 2
1 2 0 0 0 1

0 0 0 0 0
0 0 0 0
0 0 0 0

0


.

The first three columns of L0,0 have 0s in rows 4–12, since Proposition 13 tells us
that the V ◦ component of S has no impact on the Vℓ, Vr, and Vt components of
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λ0,0(S). Conversely, several nonzero entries in the last column of L0,0 indicate that
the monomial x2y3 ∈ Vr in S has an effect on monomials of λ0,0(S) outside of Vr. In
general, entries guaranteed to be 0 by Theorem 16 below have been omitted from
L0,0, and entries guaranteed to be 0 by Corollary 17 have been omitted from L1,0

and L2,0. In addition, the second statement in Proposition 9 implies that the last
d = 4 rows of L1,0 and L2,0 are zero rows.

Proposition 13 shows that, under applications of λ0,0, information flows from
Vℓ to its complement subspace but not in the other direction, and similarly for Vr

and Vt. That is, information flows between four subspaces of V according to the
following diagram.

〈
x0yd−1

〉
⊕ V ◦

t

〈
xhyd−1

〉
〈
x0y0

〉
⊕ V ◦

ℓ ⊕ V ◦ V ◦
r

We can refine this further.

Theorem 16. Under applications of λ0,0 on V , information flows according to
the following diagram. Namely, if S ∈ V and U is one of the seven distinguished
subspaces of V , then the projection of λ0,0(S) to U is determined by the projections
of S onto the subspaces with arrows pointing to U .

〈
x0yd−1

〉
V ◦
t

〈
xhyd−1

〉
V ◦
ℓ V ◦ V ◦

r

〈
x0y0

〉

Proof. We will rule out all arrows that do not appear in the diagram.
Part 1 of Proposition 13 implies that the left subspaces

〈
x0y0

〉
, V ◦

ℓ , and
〈
x0yd−1

〉
have no incoming arrows from the other four subspaces. Similarly, Part 2 im-
plies that the right subspaces V ◦

r and
〈
xhyd−1

〉
have no incoming arrows from the

other five subspaces, and Part 3 implies that the top subspaces
〈
x0yd−1

〉
, V ◦

t , and〈
xhyd−1

〉
have no incoming arrows from the other four subspaces. It follows that

the top corner subspaces
〈
x0yd−1

〉
and

〈
xhyd−1

〉
have no incoming arrows other

than their loops.
To see that

〈
x0y0

〉
has no incoming arrows other than its loop, let j ∈ {1, . . . , d−

1}. We have λ0,0(x
0yj) = Λ0,0(x

0yjQq−1). The coefficient of x0y0 in λ0,0(x
0yj)

is equal to the coefficient of x0y0 in x0yjQq−1. However, since P (0, 0) = 0 and
Q = P/y, the only monomials xIyJ with J ≤ −1 that appear in Q with a nonzero
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coefficient satisfy I ≥ 1. Therefore the coefficient of x0y0 in x0yjQq−1 is 0, and〈
x0y0

〉
has only one incoming arrow. □

Theorem 16 and Proposition 9 imply the following, where the seven blocks cor-
respond to the seven subspaces in Theorem 16.

Corollary 17. If the basis of V is ordered according to (8), then the matrix cor-
responding to λ0,0 is block upper triangular with seven blocks. Moreover, for all
r ∈ {1, 2, . . . , q− 1}, the matrix corresponding to λr,0 is block upper triangular with
four blocks (whose sizes are h(d− 1), h, d− 1, and 1).

5. Orbit size of a univariate polynomial under λ0

Proposition 13 (and, more explicitly, Theorem 16) shows that the orbit size of
a bivariate polynomial S ∈ V under λ0,0 depends in part on the orbit sizes of
the univariate polynomials πℓ(S), πr(S), πt(S) under λ0 for the respective values
R = A0/y,R = Ah/y,R = Bd. (Recall from Equation (6) that the definition of λ0

depends on R.) The main result of this section is Theorem 30, which establishes
an upper bound on orbit sizes under λ0 for a general element R ∈ z−1Fq[z]; this
includes the case R = Ah/y (where z = y), which is not necessarily a polynomial
(for instance, as in Example 14).

We will use the following lemma several times.

Lemma 18. Let q ≥ 2.

• If k ∈ Z and f(x) =
⌊
x+k(q−1)

q

⌋
, then, for every x ≥ k and n ≥

⌊
logq(x− k)

⌋
+

1, we have fn(x) = k.

• If k ≥ 1 and f(x) =
⌈
x+k(q−1)

q

⌉
, then, for every x ≥ 0 and n ≥

⌊
logq k

⌋
+1,

we have fn(x) ≥ k.

Proof. The function f(x) =
⌊
x+k(q−1)

q

⌋
= k +

⌊
x−k
q

⌋
has an attracting fixed point

k for x ≥ k. Since
⌊
⌊(x−k)/qn⌋

q

⌋
=
⌊

x−k
qn+1

⌋
, a straightforward induction shows that

fn(x) = k +
⌊
x−k
qn

⌋
for all n ≥ 0. The first statement follows.

For the second statement, we have fn(x) = k +
⌈
x−k
qn

⌉
for all n ≥ 0. If n ≥⌊

logq k
⌋
+1, then

⌈
− k

qn

⌉
= 0. Therefore fn(x) = k+

⌈
x−k
qn

⌉
≥ k+

⌈
− k

qn

⌉
= k. □

The following proposition shows that if degS > degR then the orbit of S under
λ0 eventually consists of polynomials with degree at most degR. Looking ahead,
this will let us restrict attention to polynomials S with degS ≤ degR in later results
(namely, Theorem 23, Corollary 25, and Theorem 30). We will use it directly in
the proof of Lemma 31.

Proposition 19. Let R ∈ z−1Fq[z] be a Laurent polynomial, let r = degR, and
define λ0 on Fq[z] by λ0(S) = Λ0

(
SRq−1

)
. Let S ∈ Fq[z], let s = degS, and

suppose that s > r. If n ≥
⌊
logq(s− r)

⌋
+ 1, then deg λn

0 (S) ≤ r.

In particular, if r = −1 then λn
0 (S) = 0 for sufficiently large n since λ0 maps

polynomials to polynomials.
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Proof. We have deg λ0(S) ≤ s+r(q−1)
q . We track the behavior of deg λn

0 (S) by

iterating the function f(x) =
⌊
x+r(q−1)

q

⌋
. Applying Lemma 18 with k = r, the

result follows. □

Example 20. Let q = 3 and R = (z2 + 1)(z3 + z2 + 2) ∈ F3[z]. By computing
orbλ0

(S) from each S ∈ F3[z] with degS ≤ degR = 5, one finds that each orbit
is periodic with period length 1, 2, 3, or 6. For example, the orbit of z4 + z2 is
constant, the orbit of z2 + 2z + 1 has period length 2, the orbit of z + 2 has period
length 3, and the orbit of 1 has period length 6.

The orbit of S ∈ Fq[z] under λ0 is eventually periodic, since an argument similar
to Proposition 19 shows that the elements in the orbit have bounded degree. As
we vary q and r and consider all polynomials R ∈ Fq[z] with fixed degree degR =
r, one finds that the maximal size of the orbit is independent of q and depends
only on r. We prove this in Theorem 23, which is an important step in proving
Theorem 30. The proof uses the periodicity of the series expansion of 1

R to establish
the periodicity of the orbit under λ0, as in the following example.

Example 21. Let q = 2 and R = z2 + z + 1 ∈ F2[z]. In light of Proposition 19,
we consider polynomials S ∈ F2[z] such that degS ≤ degR = 2. Let j ∈ {0, 1, 2},
so that each monomial in S is of the form c zj . Proposition 4 implies λ0(z

j) =

Λ0(z
jRq−1) = Λ0(

zj

R )R. Iterating λ0 gives λn
0 (z

j) = Λn
0 (

zj

R )R for all n ≥ 0. We

show that Λ2
0(

zj

R ) = zj

R ; this implies λ2
0(z

j) = zj , which, by linearity, implies

λ2
0(S) = S for all S ∈ F2[z] with degS ≤ 2. We will only use two facts about the

series expansion
∑

n≥0 a(n)z
n := 1

R = 1 + 1z + 0z2 + 1z3 + 1z4 + 0z5 + · · · : it is

periodic with period length 3, and a(2) = 0. We start by rewriting

zj

R
=
∑
n≥0

a(n)zn+j =
∑
n≥j

a(n− j)zn.

Since Λ2
0(z

n) = 0 if n ̸≡ 0 mod 4, this implies

Λ2
0

(
zj

R

)
= Λ2

0

 ∑
n≥⌈j/4⌉

a(4n− j)z4n

 =
∑

n≥⌈j/4⌉

a(4n− j)zn.

If j = 0 or j = 1, then ⌈j/4⌉ = j, so this series is
∑

n≥j a(4n − j)zn. If j = 2,

then the coefficient for n = ⌈j/4⌉ = 1 is a(4 · 1− j) = a(2) = 0, so again the series
is
∑

n≥2 a(4n − j)zn =
∑

n≥j a(4n − j)zn. Since a(n)n≥0 is periodic with period

length 3, we have a(4n − j) = a((4n − j) mod 3) = a(n − j) for all n ≥ j ≥ 0.
Therefore

Λ2
0

(
zj

R

)
=
∑
n≥j

a(4n− j)zn =
∑
n≥j

a(n− j)zn =
∑
n≥0

a(n)zn+j =
zj

R
,

as desired.

In general, periodicity of the series expansion of 1
R is guaranteed by the following

standard argument.

Lemma 22. Let R ∈ Fq[z] be a polynomial with degR ≥ 1. If the coefficient of z0

is nonzero, then 1
R has a power series expansion, and the sequence of coefficients

of 1
R is periodic.
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Proof. The fact that 1
R has a power series expansion follows from R(0) ̸= 0 and the

geometric series formula. Write 1
R =

∑
n≥0 a(n)z

n. The relation R
∑

n≥0 a(n)z
n =

1 gives a recurrence for the coefficient sequence a(n)n≥0. Since there are only
finitely many (degR)-tuples of elements from Fq, the sequence a(n)n≥0 is eventually
periodic. Since the coefficient of zdegR is invertible, we can run the recurrence
backward as well as forward, so a(n)n≥0 is periodic. □

The main result of this section is that the size of the orbit under λ0 is related
to the factorization of R. The factorization into irreducibles of an element R ∈
z−1Fq[z] is R = cze0Re1

1 · · ·Rek
k , where z,R1, . . . , Rk ∈ Fq[z] are distinct, monic,

irreducible polynomials, c ∈ Fq, e0 ≥ −1, and ei ≥ 1 for all i ∈ {1, . . . , k}. We
say that R is square-free if ei = 1 for all i ∈ {1, . . . , k}. If R ∈ z−1Fq[z] and
R ̸= 0, define degR to be the largest exponent of z with a nonzero coefficient in
the expansion of R in the monomial basis.

First we establish a bound on the orbit size for certain square-free Laurent poly-
nomials R with positive degree. We use the convention that lcm() = 1.

Theorem 23. Let R ∈ z−1Fq[z] be a nonzero square-free Laurent polynomial such
that degR ≥ 1, whose factorization into irreducibles is of the form cze0R1 · · ·Rk,
where e0 ∈ {−1, 0}. Let ℓ = lcm(degR1, . . . ,degRk). Define λ0 on Fq[z] by
λ0(S) = Λ0

(
SRq−1

)
. Then λℓ

0(S) = S for all S ∈ Fq[z] with degS ≤ degR.

To prove Theorem 23, we use the following classical result to bound the period
length of the series expansion of 1

R and to conclude that certain coefficients are 0.

Proposition 24. Let ℓ ≥ 1. The product of all monic irreducible polynomials in

Fq[z] with degree dividing ℓ is zq
ℓ − z.

Proposition 24 follows from the fact that Fqℓ is the splitting field of zq
ℓ − z over

Fq; since each element in Fqℓ has a minimal polynomial over Fq, the product of all

those minimal polynomials is zq
ℓ − z.

Now we prove Theorem 23.

Proof of Theorem 23. Let r := degR. Since e0 ∈ {−1, 0}, we have a power series
expansion 1

R =
∑

n≥0 a(n)z
n ∈ FqJzK. Let j ∈ {0, 1, . . . , r}. By Proposition 4,

λ0(z
j) = Λ0(z

jRq−1) = Λ0(
zj

R )R. Therefore, by iterating, λℓ
0(z

j) = Λℓ
0(

zj

R )R. We

show Λℓ
0(

zj

R ) = zj

R ; this implies λℓ
0(z

j) = zj , and the statement will follow from the

linearity of λ0. Since Λℓ
0(z

n) = 0 if n ̸≡ 0 mod qℓ, we have

Λℓ
0

(
zj

R

)
= Λℓ

0

∑
n≥j

a(n− j)zn

 = Λℓ
0

 ∑
n≥⌈j/qℓ⌉

a(qℓn− j)zq
ℓn


=

∑
n≥⌈j/qℓ⌉

a(qℓn− j)zn.

We will use the fact that the series expansion of 1
R is periodic to rewrite a(qℓn− j).

Since each degRk divides ℓ, Proposition 24 implies that the polynomial z−e0R

divides zq
ℓ−1 − 1. Write 1− zq

ℓ−1 = RT where T ∈ z−e0Fq[z]; then

(9)
1

R
=

T

1− zqℓ−1
.
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Since r ≥ 1, a(n)n≥0 is periodic by Lemma 22. Moreover, deg T < qℓ − 1, so its
period length divides qℓ − 1. Therefore a(qℓn − j) = a((qℓn − j) mod (qℓ − 1)) =
a(n− j) for all n ≥ j, so∑

n≥j

a(qℓn− j)zn =
∑
n≥j

a(n− j)zn =
zj

R
,

and it follows that

Λℓ
0

(
zj

R

)
=

j−1∑
n=⌈j/qℓ⌉

a(qℓn− j)zn +
zj

R
.

It remains to show that a(qℓn−j) = 0 for all n ∈ {
⌈
j/qℓ

⌉
, . . . , j−2, j−1}. If j = 0

or j = 1, this is vacuously true, so assume j ∈ {2, 3, . . . , r}. We identify certain 0
coefficients in the series 1

R . From Equation (9), we obtain∑
n≥0

a(n)zn =
1

R
=

T

1− zqℓ−1
= T + Tzq

ℓ−1 + Tz2(q
ℓ−1) + · · · .

Since deg T = qℓ − 1 − degR = qℓ − 1 − r, this implies 0 = a(qℓ − r) = a(qℓ −
r + 1) = · · · = a(qℓ − 2); that is, a(qℓ − i) = 0 for all i ∈ {2, 3, . . . , r}. For all
n ∈ {

⌈
j/qℓ

⌉
, . . . , j − 2, j − 1}, we have j − n + 1 ∈ {2, 3, . . . , j −

⌈
j/qℓ

⌉
+ 1} ⊆

{2, 3, . . . , r}. Therefore, since the period length of a(n)n≥0 divides qℓ − 1, we have
a(qℓn−j) = a(qℓ− (j−n+1)) = 0 for n ∈ {

⌈
j/qℓ

⌉
, . . . , j−2, j−1}, as desired. □

In Theorem 23 we assumed that degR ≥ 1. However in general degR ≥ −1; the
next result extends Theorem 23.

Corollary 25. Let R ∈ z−1Fq[z] be a nonzero square-free Laurent polynomial whose
factorization into irreducibles is of the form cze0R1 · · ·Rk, where e0 ∈ {−1, 0}. Let
ℓ = lcm(degR1, . . . ,degRk). Define λ0 on Fq[z] by λ0(S) = Λ0

(
SRq−1

)
. Then

λℓ
0(S) = S for all S ∈ Fq[z] with degS ≤ degR.

Proof. Let r := degR. Theorem 23 covers the case r ≥ 1. If r = −1, then S = 0
and the conclusion holds.

Suppose r = 0, so that R = bz−1 + c for some b, c ∈ Fq with c ̸= 0. Here ℓ = 1.
Let S ∈ Fq. By Proposition 4, λ0(S) = Λ0(SR

q−1) = SΛ0(
1
R )R. We show that

Λ0(
1
R ) = 1

R , which will imply λ0(S) = S. If b = 0, then

Λ0

(
1

R

)
= Λ0

(
1

c

)
=

1

c
=

1

R
.

If b ̸= 0, then

Λ0

(
1

R

)
= Λ0

(
z

b(1− (−c/b)z)

)
= Λ0

1

b

∑
n≥0

(−c/b)nzn+1


=

1

b

∑
n≥1

(−c/b)nq−1zn =
1

b

∑
n≥0

(−c/b)nzn+1 =
1

R

since nq − 1 ≡ n− 1 mod q − 1. □
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Proposition 13 tells us that the orbit of y ∂P
∂y under λ0,0, when restricted to the

left, right, and top borders of V , is dictated by the orbits of its projection onto
these borders under λ0, where the latter is defined using A0/y, Ah/y, and Bd.
These orbits can be studied using Corollary 25 as follows.

Example 26. We continue to use the polynomial P from Examples 7 and 12. The
initial state is S0 = y ∂P

∂y , and the second state in the orbit of S0 under λ0,0 is

S1 := λ0,0(S0) = xy3 + (x2 + x+ 1)y2 + (2x2 + 2)y + x2 + x.

In Example 14, we reduced to the univariate operator λ0 with R = A0/y, R = Ah/y,
and R = Bd. We verify that the conditions of Corollary 25 hold. The factorizations
into irreducibles of the three Laurent polynomials R are

A0/y = 2y3 + y + 1 = 2(y3 + 2y + 2)

Ah/y = y3 + 1 + 2y−1 = y−1(y4 + y + 2)

Bd = x2 + x+ 2.

Moreover, deg πℓ(S1) ≤ deg(A0/y), deg πr(S1) ≤ deg(Ah/y), and deg πt(S1) ≤
degBd. Therefore, by Corollary 25, the three relevant orbits under the three oper-
ators λ0 are periodic and have respective period lengths dividing 3, 4, and 2. For
R = A0/y, the orbit of πℓ(S1) under λ0 is

y2 + 2y, y2 + y, y2, y2 + 2y, . . . .

For R = Ah/y, the orbit of πr(S1) under λ0 is

y2 + 2y + 1, y2 + y + 1, y2, 1, y2 + 2y + 1, . . . .

Lastly, for R = Bd, the orbit of πt(S1) under λ0 is

x, 2x, x, . . . .

In particular, the upper bounds on the period lengths are attained.

It remains to remove the restriction that R is square-free. Unlike the square-free
case, the orbit of S under λ0 may have a transient (in other words, may be eventually
periodic but not periodic). First we give two propositions showing that elements
sufficiently far out in the orbit are necessarily divisible by a certain polynomial; if
S is not divisible by this polynomial then the orbit has a transient.

Proposition 27. Let R ∈ z−1Fq[z] be a nonzero Laurent polynomial such that
R = F eG for some F ∈ Fq[z], G ∈ z−1Fq[z], and e ≥ 1. For all S ∈ Fq[z] and all
n ≥

⌈
logq e

⌉
, the polynomial λn

0 (S) is divisible by F e−1.

Note that there are potentially multiple ways to decompose R in Proposition 27.
For example, if R = z4 then we could write F = z, e = 4, G = 1 or F = z, e =
5, G = z−1. The latter choice leads to a stronger conclusion regarding divisibility.

Proof of Proposition 27. Let S ∈ Fq[z], and write S = F sT for some s ≥ 0. (We
do not require s to be maximal.) We have

λ0(S) = Λ0(SR
q−1) = Λ0

(
F sTF e(q−1)Gq−1

)
= Λ0

(
F (s+e(q−1)) mod qTGq−1

)
F ⌊(s+e(q−1))/q⌋
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by Proposition 4. Therefore λ0(S) is divisible by F ⌊(s+e(q−1))/q⌋ = F e+⌊(s−e)/q⌋, so

we iterate the function f(x) = e +
⌊
x−e
q

⌋
. Let n ≥

⌈
logq e

⌉
, so that

⌊
− e

qn

⌋
= −1.

As in the proof of Lemma 18, we have fn(s) = e +
⌊
s−e
qn

⌋
≥ e +

⌊
− e

qn

⌋
= e − 1.

Therefore λn
0 (S) is divisible by F e−1. □

Example 28. Let q = 3 and R = z−1(z+1)3(z+2). The orbit of S = 1 under λ0

is 1, (z + 1)2, (z + 1)2, . . . . It has transient length 1 (and period length 1).

If F = z and if G is a polynomial, then we can slightly increase the exponent to
which F eventually divides elements in the orbit under λ0.

Proposition 29. Let R ∈ Fq[z] be a nonzero polynomial such that R = zeG for
some G ∈ Fq[z] where e ≥ 1 and G is not divisible by z. For all S ∈ Fq[z] and all
n ≥

⌊
logq e

⌋
+ 1, the polynomial λn

0 (S) is divisible by ze.

Proof. Let S ∈ Fq[z], and write S = zsT where s ≥ 0 and T is not divisible by z.
We have

λ0(S) = Λ0(SR
q−1) = Λ0

(
zs+e(q−1)TGq−1

)
.

Since zs+e(q−1)TGq−1 is divisible by zs+e(q−1), it follows that λ0(S) is divisible by

zf(s), where f(x) = e+
⌈
x−e
q

⌉
. Applying Lemma 18, if n ≥

⌊
logq e

⌋
+1 then λn

0 (S)

is divisible by ze. □

In the following theorem, we show that the situation for a general (not necessarily
square-free) element R ∈ z−1Fq[z] reduces to Corollary 25 by Propositions 27 and
29. The idea of the proof is that if R is divisible by F e, then every application of λ0

pushes the image into a smaller vector space until we are emulating the map λ0 for
a square-free polynomial R′. We define logq 0 = −∞, ⌊−∞⌋ = −∞, ⌈−∞⌉ = −∞,
and max() = 0. (When degR = −1, the only polynomial S satisfying degS ≤ degR
is S = 0, so the theorem does not say much in this case.)

Theorem 30. Let R ∈ z−1Fq[z] be a nonzero Laurent polynomial. Let R =
cze0Re1

1 · · ·Rek
k be its factorization into irreducibles. Let

(10) t = max
(⌊
logq max(e0, 0)

⌋
+ 1,

⌈
logq max(e1, . . . , ek)

⌉
, 0
)

and ℓ = lcm(degR1, . . . ,degRk). Define λ0 on Fq[z] by λ0(S) = Λ0

(
SRq−1

)
. For

all S ∈ Fq[z] with degS ≤ degR, the orbit size of S under λ0 is at most t+ ℓ.

Proof. Define the radical of R by radR = czmin(e0,0)R1 · · ·Rk. Let

U = zmax(e0,0)Re1−1
1 · · ·Rek−1

k

so that U radR = R. Let S ∈ Fq[z] with degS ≤ degR. We show that the orbit of
S under λ0 is eventually periodic with transient length at most t and period length
dividing ℓ.

We claim that λt
0(S) = TU for some T ∈ Fq[z] satisfying deg T ≤ deg radR.

To see that Rei−1
i divides λt

0(S) for each i ∈ {1, 2, . . . , k}, we apply Proposition 27

with F = Ri. If e0 ∈ {−1, 0}, then zmax(e0,0) = 1. If e0 ≥ 1, then Proposition 29
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implies that zmax(e0,0) = ze0 divides λt
0(S). To see that deg T ≤ deg radR, we have

deg T = deg λt
0(S)− degU

≤ degR− degU

=

(
e0 +

k∑
i=1

ei degRi

)
−

(
max(e0, 0) +

k∑
i=1

(ei − 1) degRi

)

= min(e0, 0) +

k∑
i=1

degRi = deg radR.

This completes the proof of the claim.
Next we use the identity ei − 1 + ei(q − 1) = eiq − 1 = q − 1 + (ei − 1)q. For all

T ∈ Fq[z] (and in particular for the T satisfying λt
0(S) = TU),

λ0(TU) = Λ0

(
TURq−1

)
= Λ0

(
Tcq−1zmax(e0,0)+e0(q−1)Re1q−1

1 · · ·Rekq−1
k

)
= Λ0

(
Tcq−1zmin(e0,0)(q−1)Rq−1

1 · · ·Rq−1
k Uq

)
= Λ0

(
T (radR)q−1

)
U

by Proposition 4. Accordingly, define κ0 : Fq[z] → Fq[z] by κ0(T ) = Λ0(T (radR)q−1),
so that λ0(TU) = κ0(T )U . Iterating, we have λℓ

0(TU) = κℓ
0(T )U . Applying Corol-

lary 25 to κ0, we have κℓ
0(T ) = T since radR is square-free and deg T ≤ deg radR.

Therefore

λt+ℓ
0 (S) = λℓ

0

(
λt
0(S)

)
= λℓ

0(TU) = κℓ
0(T )U = TU = λt

0(S),

so the orbit of S under λ0 contains at most t+ ℓ elements. □

6. Orbit size under λ0,0

In this section, we prove Theorem 1. Our aim is to bound the size of the q-kernel
for F =

∑
n≥0 a(n)x

n ∈ FqJxK, which satisfies P (x, F ) = 0. From Corollary 11, it

remains to bound |orbΛ0
(F )|, equivalently, |orbλ0,0

(S0)| where S0 = y ∂P
∂y .

To do this, we will use Theorem 30 to obtain bounds on orbit sizes under λ0,0.
We need the following lemma, which bounds the degree of the three border poly-

nomials of λ0,0

(
y ∂P

∂y

)
. Recall the definitions of Ai and Bj from Equation (7), that

deg(A0/y) ≥ 0, and that Ah and Bd are nonzero.

Lemma 31. Let S0 = y ∂P
∂y . Then

(1) deg πℓ(λ0,0(S0)) ≤ deg(A0/y),
(2) deg πr(λ0,0(S0)) ≤ deg(Ah/y), and
(3) deg πt(λ

n
0,0(S0)) ≤ degBd for all n ≥

⌊
logq h

⌋
+ 2.

Proof. For the first two statements, we will use

πℓ(S0) = y dA0

dy and πr(S0) = y dAh

dy .

For the first statement, letR = A0/y. Part 1 of Proposition 13 gives πℓ(λ0,0(S0)) =

λ0(πℓ(S0)) = Λ0

(
y dA0

dy · (A0/y)
q−1
)
. The degree of this polynomial is at most

deg(A0/y).
The second statement follows in the same way by applying Part 2 of Proposi-

tion 13 since degx S0 ≤ h.
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For the first two statements, we applied Proposition 13 to S0 = y ∂P
∂y . For the

third statement, we apply Part 3 of Proposition 13 to R = Bd and λ0,0(S0) since
degy λ0,0(S0) ≤ d− 1 by Proposition 9. Let S = πt(λ0,0(S0)) = πt

(
Λ0,0

(
S0Q

q−1
))
.

All nonzero monomials in πt

(
Λ0,0

(
S0Q

q−1
))

come from applying Λ0 to terms in

(d − 1)Bd−1 · Bq−1
d or dBd · (q − 1)Bd−1B

q−2
d , so S = Λ0

(
(qd− 1)Bd−1B

q−1
d

)
.

We have r := degR = degBd ≥ 0 and s := degS ≤ h. By Proposition 19, if
n− 1 ≥

⌊
logq h

⌋
+ 1 ≥

⌊
logq max(s− r, 1)

⌋
+ 1 then deg πt(λ

n
0,0(S0)) ≤ degBd. □

Example 32. For the polynomial P in Examples 7 and 26, it suffices to take n = 1
to achieve deg πt(λ

n
0,0(S0)) ≤ degBd, since

deg πt(λ0,0(S0)) = deg πt(S1) = deg x ≤ deg(x2 + x+ 2) = degBd.

The eventual period lengths in Theorem 30 are bounded by lcm(degR1, . . . ,degRk).
We will use the function L(l,m, n) defined in Section 1 to obtain a bound that is
independent of the factorizations of A0/y, Ah/y, and Bd. We rephrase Theorem 1
in terms of kerq(a(n)n≥0), since it has the same size as the minimal automaton for
a(n)n≥0.

Theorem 1. Let F =
∑

n≥0 a(n)x
n ∈ FqJxK \ {0} be the Furstenberg series asso-

ciated with a polynomial P ∈ Fq[x, y] of height h and degree d. Then

|kerq(a(n)n≥0)| ≤ qhd + q(h−1)(d−1)L(h, d, d) +
⌊
logq h

⌋
+
⌈
logq max(h, d− 1)

⌉
+ 3.

Proof. By Corollary 11, |kerq(a(n)n≥0)| ≤ qhd + |orbΛ0
(F )|, so we now bound

|orbΛ0
(F )| ≤ |orbλ0,0

(S0)|. We do this by emulating λ0,0 with the appropriate
univariate operators λ0 on the left, right, and top borders of V and using a crude
upper bound for the rest. Lemma 31 and Proposition 13 will allow us to do this.

We use the following fact. Let V be a finite vector space with basis B. Let
(B1,B2) be a partition of B, and let U1 and U2 be the subspaces generated by B1

and B2. Let πU denote projection onto U . If f : V → V and f̃ : U1 → U1 are linear
transformations satisfying πU1 ◦ f = f̃ ◦ πU1 , then

f(x) = πU1(f(x)) + πU2(f(x)) = f̃(πU1(x)) + πU2(f(x)),

so that |orbf (x)| ≤ |U2| · |orbf̃ (πU1
(x))| for all x ∈ V .

We apply this fact to U2 = V ◦, where V ◦ is defined in Equation (5), and f = λ0,0.

To define f̃ , note that Proposition 13 gives us an operator λ̃0 : U1 → U1 that satisfies
πU1

◦ λ0,0 = λ̃0 ◦ πU1
. (The operator λ̃0 acts as the appropriate λ0 on the three

respective borders.) Set f̃ = λ̃0. The fact in the previous paragraph now implies
|orbλ0,0(x)| ≤ |V ◦| · |orbλ̃0

(πU1(x))| for all x ∈ V . Let

t :=
⌊
logq h

⌋
+ 2 +

⌈
logq max(h, d− 1)

⌉
+ 1;

we will justify the definition of t below. Set St := λt
0,0(y

∂P
∂y ). We have St ∈ V by

Proposition 9 since t ≥ 1. Write St = πV ◦(St) + T where T ∈ U1. Therefore, using
|V ◦| = q(h−1)(d−1), we have

(11) |orbλ0,0
(St)| ≤ q(h−1)(d−1) · |orbf̃ (T )|.

It remains to bound |orbf̃ (T )|. We will do this by bounding the orbit sizes of the

projections πℓ(T ), πr(T ), and πt(T ) under the respective operators λ0, defined by
the Laurent polynomials R = A0/y on the left border, R = Ah/y on the right
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border, and R = Bd on the top border. Equation (10) in Theorem 30 will give
transient lengths tℓ, tr, and tt in terms of the factorization of R. These transient
lengths are at most

max(tℓ, tr, tt) ≤
⌈
logq max(h, d− 1)

⌉
+ 1,

where the upper bound here is achieved in the extreme case e1 = · · · = ek = 0 and
e0 = h or e0 = d− 1. Since t ≥

⌊
logq h

⌋
+ 2, Lemma 31 and Proposition 13 tell us

that, on U1, we can emulate the action of λ0,0 on St with the three operators λ0.
Since πℓ(T ) = πℓ(St), πr(T ) = πr(St), and πt(T ) = πt(St), we consider the sizes of
the orbits

orbℓ(St) = {λn
0 (πℓ(St)) : n ≥ 0}

orbr(St) = {λn
0 (πr(St)) : n ≥ 0}

orbt(St) = {λn
0 (πt(St)) : n ≥ 0}.

By Theorem 30 and our choice of t, these three orbits are periodic, i.e. have no
transient. Lemma 31 implies degSt ≤ degBd, so we can apply Theorem 30 with
R = Bd to πt(St). It tells us that |orbt(St)| = lcm(σ) for some integer partition σ ∈
parts(degBd). Similarly, for |orbℓ(St)| and |orbr(St)| we obtain integer partitions
in parts(1 + degA0/y) = parts(degA0) and parts(1 + degAh/y) = parts(degAh).

We now use

(12) |orbf̃ (T )| ≤ lcm
(
|orbℓ(St)|, |orbr(St)|, |orbt(St)|

)
and maximize over the orbit sizes that arise. By Equation (12) and the definition
of L, we have |orbf̃ (T )| ≤ L(h, d, d) since degA0 ≤ d, degAh ≤ d, and degBd ≤ h.

Equation (11) gives

|orbλ0,0
(St)| ≤ q(h−1)(d−1)L(h, d, d).

It follows that |orbΛ0
(F )| ≤ |orbλ0,0

(St)| + t ≤ q(h−1)(d−1)L(h, d, d) + t as desired.
□

Example 33. We continue Examples 7 and 32, where h = 2 and d = 4. We
have L(h, d, d) = 12 = lcm(3, 4, 2). Computing the orbit of S0 under λ0,0, one
finds that it has size 157, consisting of 1 transient state followed by a period with
length 156 = 13 · 12. This period length is less than the theoretical maximum
q(h−1)(d−1)L(h, d, d) = 27 · 12. The number of states in the constructed automaton
is 5989 ≈ 37.917, which is on the order of the upper bound

qhd + q(h−1)(d−1)L(h, d, d) +
⌊
logq h

⌋
+
⌈
logq max(h, d− 1)

⌉
+ 3

= 38 + 33 · 12 + 4

= 6889 ≈ 38.044.

Minimizing the automaton reduces the number of states by 1 to 5988.

Asymptotically, we have the following.

Theorem 2. Let F =
∑

n≥0 a(n)x
n ∈ FqJxK be the Furstenberg series associated

with a polynomial P ∈ Fq[x, y] of height h and degree d. Then |kerq(a(n)n≥0)| is in
(1 + o(1))qhd as any of q, h, or d tends to infinity and the others remain constant.
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Proof. Recall that the conditions on a Furstenberg series guarantee that d ≥ 1. If
h = 0, then the power series F is the 0 series, so |kerq(a(n)n≥0)| = 1. Therefore we
assume h ≥ 1.

As before, let g(n) be the Landau function. The set of triples of integer partitions
of h, d, d gives rise to a subset of integer partitions of h + 2d. Thus L(h, d, d) ≤
g(h+ 2d). By Theorem 1,

|kerq(a(n)n≥0)| ≤ qhd + q(h−1)(d−1)g(h+ 2d) +
⌊
logq h

⌋
+
⌈
logq max(h, d− 1)

⌉
+ 3.

The expression
⌊
logq h

⌋
+
⌈
logq max(h, d− 1)

⌉
+ 3 is clearly in o(1)qhd. It remains

to show that q(h−1)(d−1)g(h + 2d) is also in o(1)qhd. Landau [17] proved that

log g(n) ∼
√
n log n, that is, g(n) = e(1+ϵ(n))

√
n logn, where ϵ(n) → 0 as n → ∞.

Therefore

q(h−1)(d−1)g(h+ 2d)

qhd
=

g(h+ 2d)

qh+d−1
=

e(1+ϵ(h+2d))
√

(h+2d) log(h+2d)

qh+d−1
,

and this tends to 0 as any of q, h, or d tends to infinity and the others remain
constant. □

Bridy used a similar argument, also bounding the orbit size by g(h + 2d) [7,
Proof of Theorem 1.2].

Example 34. The factor 1+o(1) cannot be removed from the bound in Theorem 2.
Let q = 2, and consider

P = (x3 + x2 + 1)y3 + (x3 + 1)y2 + (x3 + x2 + x+ 1)y + x3 + x2 ∈ F2[x, y]

with height h = 3 and degree d = 3. The coefficient sequence a(n)n≥0 of the series
F ∈ F2JxK satisfying P (x, F ) = 0 is 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, . . . . The
constructed automaton has 532 states. Minimizing reduces the number of states
by only 1 to 531, which is larger than qhd = 512.

With the same techniques as in the proof of Theorem 1, one obtains the fol-
lowing result, which concerns diagonals of rational functions that are not necessar-
ily of the form in Theorem 5. To state it, we extend the function L(n1, n2, n3)
from Section 1 to L(n1, n2, n3, n4), defined analogously as the maximum value
of lcm(lcm(σ1), lcm(σ2), lcm(σ3), lcm(σ4)) over integer partitions σi of integers in
{1, 2, . . . , ni}. The reason for this is that Theorem 35 is symmetric in x and y, unlike
Theorem 5. This symmetry leads to the appearance of L(h, h, d, d) in Theorem 35
instead of L(h, d, d) as in Theorem 1.

Theorem 35. Let P (x, y) and Q(x, y) be polynomials in Fq[x, y] such that Q(0, 0) ̸=
0. Let

F = D
(
P (x, y)

Q(x, y)

)
,

and write F (x) =
∑

n≥0 a(n)x
n. Let

h = max(degx P,degx Q)

d = max(degy P,degy Q),

and assume h ≥ 1 and d ≥ 1. Then the size of kerq((a(n) mod pα)n≥0) is at most

qhd + q(h−1)(d−1)L(h, h, d, d) +
⌊
logq max(h, d)

⌋
+
⌈
logq max(h, d)

⌉
+ 2.
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Consequently, |kerq((a(n))n≥0)| is in (1 + o(1))qhd as any of q, h, or d tends to
infinity and the others remain constant.

When comparing Theorem 35 to the rest of the paper, note that a Furstenberg
series is the diagonal of a rational function, whose denominator is also called Q,
but in Theorem 35 the denominator Q has degree d and not d− 1 as before.

The structure of the proof of Theorem 35 is similar to that of Theorem 1. One dif-
ference is that the diagonal in Theorem 5 contains expressions of the form P (xy, y),
which led us to shear and to consider the maps λr,0 on Laurent polynomials. For
general diagonals, the symmetry in x and y means that no shearing is required, the
relevant maps are λr,r, and no Laurent polynomials enter the picture. We define
the main objects and state the modifications of relevant results used in the proof.
With h and d defined as in Theorem 35, let

V :=
〈
xiyj : 0 ≤ i ≤ h and 0 ≤ j ≤ d

〉
and

V ◦ =
〈
xiyj : 1 ≤ i ≤ h− 1 and 1 ≤ j ≤ d− 1

〉
.

The initial state of the automaton is S0 = P . Define πℓ and πr as in Section 4. For
a polynomial S =

∑
i,j ci,jx

iyj , define πb(S) =
∑

i ci,0x
i and πt(S) =

∑
i ci,dx

i.
The following results are analogues of Proposition 13 and Lemma 31; their proofs
are similar.

Proposition 36. We have the following.

(1) Let R = πℓ(Q). For all S ∈ Fq[x, y],

πℓ(λ0,0(S)) = λ0(πℓ(S)).

(2) Let R = πr(Q). For all S ∈ Fq[x, y] with height at most h,

πr(λ0,0(S)) = λ0(πr(S)).

(3) Let R = πb(Q). For all S ∈ Fq[x, y],

πb(λ0,0(S)) = λ0(πb(S)).

(4) Let R = πt(Q). For all S ∈ Fq[x, y] with degree at most d,

πt(λ0,0(S)) = λ0(πt(S)).

Lemma 37. Let

uℓ =
⌊
logq max((d− deg πℓ(Q)), 1)

⌋
+ 1

ur =
⌊
logq max((d− deg πr(Q)), 1)

⌋
+ 1

ub =
⌊
logq max((h− deg πb(Q)), 1)

⌋
+ 1

ut =
⌊
logq max((h− deg πt(Q)), 1)

⌋
+ 1.

For all S ∈ V , we have

(1) deg πℓ(λ
n
0,0(S)) ≤ deg πℓ(Q) for all n ≥ uℓ,

(2) deg πr(λ
n
0,0(S)) ≤ deg πr(Q) for all n ≥ ur,

(3) deg πb(λ
n
0,0(S)) ≤ deg πb(Q) for all n ≥ ub, and

(4) deg πt(λ
n
0,0(S)) ≤ deg πt(Q) for all n ≥ ut.

With Proposition 36 and Lemma 37, one follows the proof of Theorem 1 to prove
Theorem 35. The term

⌊
logq max(h, d)

⌋
+ 1 in Theorem 35 comes from Lemma 37

by bounding uℓ, ur by
⌊
logq d

⌋
+ 1 and ub, ut by

⌊
logq h

⌋
+ 1.
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7. Subspaces of univariate polynomials

In this section, we give two conjectures that were discovered in earlier attempts
to prove results in Section 5 bounding the period length of an orbit under the linear
operator λ0. They were not needed in the end, but they are interesting in their own
right since they identify additional structure in λ0. For a polynomial R ∈ Fq[z],
define λ0(S) = Λ0

(
SRq−1

)
as in Equation (6).

The first conjecture implies the conclusion of Theorem 23, given in Proposition 39
below. For an integer m ≥ 1, consider the set of polynomials S ∈ Fq[z] such that
degS ≤ degR and λm

0 (S) = S. This set forms a vector space.

Conjecture 38. Let R ∈ Fq[z] such that degR ≥ 1 and R is not divisible by z.
Let R = cRe1

1 · · ·Rek
k be its factorization into irreducibles. For every divisor m of

lcm(degR1, . . . ,degRk), the vector space

(13) {S ∈ Fq[z] : degS ≤ degR and λm
0 (S) = S}

has dimension 1 +
∑k

i=1 gcd(m,degRi).

In particular, the exponents ei do not affect the dimension.

Proposition 39. Let R ∈ Fq[z] be a nonzero square-free polynomial such that
degR ≥ 1 and R is not divisible by z. Let R = cR1 · · ·Rk be its factorization
into irreducibles, and let ℓ = lcm(degR1, . . . ,degRk). Conjecture 38 implies that
λℓ
0(S) = S for all S ∈ Fq[z] with degS ≤ degR.

Proof. For m = ℓ, Conjecture 38 states that the vector space (13) has dimension

1 +

k∑
i=1

gcd(ℓ,degRi) = 1 +

k∑
i=1

degRi = 1 + degR,

so in fact it is the entire space {S ∈ Fq[z] : degS ≤ degR}. □

A natural question is whether we can write down an explicit basis of the vector
space (13). For m = 1, Conjecture 38 implies that the subspace of fixed points
has dimension k + 1. The next conjecture provides a basis of this subspace, for
certain polynomials R. One basis element is R itself, since λ0(R) = Λ0(R

q) = R by
Proposition 4. We get k additional basis elements from the following operation. For
a polynomial S =

∑s
j=0 cjz

j ∈ Fq[z] where cs ̸= 0, define ∆(S) =
∑s

j=0(s− j)cjz
j .

Equivalently, ∆(S) = zs−1 d
dw (wsS) where w = 1

z . From this it follows that ∆ is a
derivation. That is, ∆(ST ) = ∆(S)T + S∆(T ) for all S, T ∈ Fq[z].

Conjecture 40. Let R ∈ Fq[z] such that degR ≥ 1. Let R = cRe1
1 · · ·Rek

k

be its factorization into irreducibles. For each i ∈ {1, 2, . . . , k}, the polynomial
Re1

1 · · ·Rei−1

i−1 ∆(Rei
i )R

ei+1

i+1 · · ·Rek
k is a fixed point of λ0. Moreover, if R is not divis-

ible by z and ei ̸≡ 0 mod p for all i, where p is the characteristic of Fq, then these
k fixed points, along with R, are linearly independent.

If R is divisible by z, then we don’t get a basis element because ∆(z) = 0.
Similarly, if ei ≡ 0 mod p then ∆(Rei

i ) = eiR
ei−1
i ∆(Ri) = 0.

Conjecture 40 implies that ∆(R) is a fixed point of λ0, since we can use the fact
that ∆ is a derivation to write ∆(R) as a sum of fixed points.

For m ≥ 2, it would be interesting to know how to extend the basis of fixed
points in Conjecture 40 to a basis of the vector space (13).
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q = 2:

h d P aut. size qhd bound

1 1 y + x 3 2 6
2 1 (x2 + x+ 1)y + x2 6 4 11
3 1 (x3 + x+ 1)y + x3 11 8 17
4 1 (x4 + x+ 1)y + x4 20 16 27
5 1 (x5 + x3 + 1)y + x5 37 32 46
6 1 (x6 + x+ 1)y + x6 70 64 78
7 1 (x7 + x+ 1)y + x7 135 128 148
8 1 (x8 + x7 + x2 + x+ 1)y + x8 264 256 280
9 1 (x9 + x5 + 1)y + x9 521 512 542
10 1 (x10 + x3 + 1)y + x10 1034 1024 1064

1 2 xy2 + (x+ 1)y + x 7 4 9
2 2 x2y2 + (x2 + x+ 1)y + x2 14 16 25
3 2 (x3 + x2 + 1)y2 + (x3 + 1)y + x 68 64 94
4 2 (x4 + x+ 1)y2 + (x4 + x2 + x+ 1)y + x 252 256 311
5 2 (x5 + x3 + 1)y2 + (x5 + x+ 1)y + x 1052 1024 1192
6 2 (x6 + x5 + 1)y2 + (x6 + x2 + x+ 1)y + x 4062 4096 4424
7 2 (x7 + x+ 1)y2 + (x7 + x4 + x3 + x+ 1)y + x 16424 16384 17288

1 3 xy3 + y2 + (x+ 1)y + x 11 8 18
2 3 (x2 + x+ 1)y3 + y2 + (x2 + 1)y + x2 + x 61 64 93
3 3 (x3 + x+ 1)y3 + y2 + (x3 + x2 + x+ 1)y + x3 + x2 533 512 614
4 3 (x4 + x+ 1)y3 + y2 + (x4 + 1)y + x4 + x3 + x 4213 4096 4871

1 4 (x+ 1)y4 + y2 + (x+ 1)y + x 20 16 33
2 4 (x2 + x+ 1)y4 + y3 + (x2 + x+ 1)y + x2 + x 216 256 358
3 4 (x3 + x+ 1)y4 + y3 + (x3 + 1)y + x2 + x 3956 4096 4870

1 5 (x+ 1)y5 + (x+ 1)y2 + y + x 37 32 67
2 5 (x2 + x+ 1)y5 + y4 + y3 + x2y2 + y + x2 + x 889 1024 1510
3 5 (x3 + x2 + 1)y5 + y4 + x3y2 + (x+ 1)y + x3 + x2 + x 43913 32768 48134

q = 3:

h d P aut. size qhd bound

1 1 (x+ 1)y + x 4 3 7
2 1 (2x2 + x+ 1)y + x2 11 9 15
3 1 (x3 + 2x+ 1)y + x3 30 27 35
4 1 (2x4 + x+ 1)y + x4 85 81 91
5 1 (x5 + 2x+ 1)y + x5 248 243 255
6 1 (2x6 + x+ 1)y + x6 735 729 741

1 2 (x+ 1)y2 + y + x 9 9 14
2 2 (x2 + x+ 2)y2 + y + x2 79 81 91
3 2 (x3 + x2 + 2x+ 1)y2 + y + x3 + x 727 729 788
4 2 (x4 + x3 + 2)y2 + y + x4 + x 6533 6561 6729

Table 1. Polynomials in Fq[x, y] achieving the maximum unmini-
mized automaton size for given values of q, h, and d, for comparison
with the bound in Theorem 1.



AN ELEMENTARY PROOF OF BRIDY’S THEOREM 29

q = 2:

h d P orbit size bound

1 1 y + x 2 4
2 1 y + x2 3 7
3 1 (x3 + x+ 1)y + x 4 9
4 1 (x4 + x3 + 1)y + x 5 11
5 1 (x5 + x+ 1)y + x 7 14
6 1 (x6 + x3 + 1)y + x 7 14
7 1 (x7 + x6 + x2 + x+ 1)y + x 13 20
8 1 (x8 + x3 + 1)y + x 16 24
9 1 (x9 + x2 + 1)y + x 21 30
10 1 (x10 + x6 + x3 + x2 + 1)y + x 31 40

1 2 xy2 + (x+ 1)y + x 3 5
2 2 x2y2 + (x2 + x+ 1)y + x2 6 9
3 2 (x3 + x2 + 1)y2 + (x3 + 1)y + x 12 30
4 2 (x4 + x2 + x)y2 + (x4 + x+ 1)y + x4 25 55
5 2 (x5 + x3 + 1)y2 + (x5 + x+ 1)y + x 60 168
6 2 (x6 + x4 + x)y2 + (x5 + x+ 1)y + x 61 328
7 2 (x7 + x+ 1)y2 + (x7 + x4 + x3 + x+ 1)y + x 168 904
8 2 (x8 + x3 + 1)y2 + (x8 + x7 + x2 + x+ 1)y + x8 240 3849

1 3 (x+ 1)y3 + y2 + (x+ 1)y + x 7 10
2 3 (x2 + 1)y3 + y2 + (x2 + x+ 1)y + x2 14 29
3 3 (x3 + x+ 1)y3 + x2y2 + y + x3 85 102
4 3 (x4 + x2 + x+ 1)y3 + y2 + y + x3 + x2 + x 373 775
5 3 (x5 + x2 + 1)y3 + y2 + (x5 + x3 + 1)y + x5 + x4 + x 7621 7688

1 4 (x+ 1)y4 + y2 + (x+ 1)y + x 12 17
2 4 x2y4 + (x2 + x+ 1)y3 + (x+ 1)y + x2 + x 26 102
3 4 (x3 + x2 + x+ 1)y4 + (x3 + x+ 1)y3 + (x2 + 1)y + x3 375 774
4 4 (x4 + 1)y4 + (x4 + x3 + 1)y3 + (x+ 1)y + x4 + x3 5209 6151

1 5 (x+ 1)y5 + (x+ 1)y2 + y + x 21 35
2 5 (x2 + 1)y5 + y4 + xy3 + x2y2 + (x+ 1)y + x2 + x 122 486
3 5 (x3 + x2 + 1)y5 + y4 + x3y2 + (x+ 1)y + x3 + x2 + x 15241 15366

q = 3:
h d P orbit size bound

1 1 y + x 2 4
2 1 (x2 + 1)y + x 3 6
3 1 (x3 + 2x2 + 1)y + x 4 8
4 1 (2x4 + x+ 1)y + x 5 10
5 1 (x5 + 2x2 + 1)y + x 7 12
6 1 (x6 + x+ 1)y + x2 7 12
7 1 (x7 + 2x3 + 1)y + x 13 18

1 2 xy2 + y + x 3 5
2 2 (x2 + 1)y2 + y + x2 + x 7 10
3 2 (x3 + 2x+ 2)y2 + y + x2 + x 25 59
4 2 (x3 + 2x+ 2)y2 + y + x4 79 168

Table 2. Polynomials in Fq[x, y] for which the initial state
achieves the maximum orbit size under λ0,0 for given values
of q, h, and d. The final column contains the value of
q(h−1)(d−1)L(h, d, d)+

⌊
logq h

⌋
+
⌈
logq max(h, d− 1)

⌉
+3 from The-

orem 1.
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Figure 2. Number of polynomials (vertical axis) with degree d =
2 that produce unminimized automata with a given size (horizontal
axis). The top six plots are for q = 2 and vary h ∈ {1, 2, . . . , 6}.
In the bottom four, q = 3 and h ∈ {1, 2, 3, 4}.
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[10] Gilles Christol, Fonctions et éléments algébriques, Pacific Journal of Mathematics 125 (1986)

1–37.
[11] Gilles Christol, Teturo Kamae, Michel Mendès France, and Gérard Rauzy, Suites algébriques,
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