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Abstract. For the sequence defined by a(n) = a(n−1)+gcd(n, a(n−1)) with

a(1) = 7 we prove that a(n) − a(n − 1) takes on only 1s and primes, making
this recurrence a rare “naturally occurring” generator of primes. Toward a

generalization of this result to an arbitrary initial condition, we also study the

limiting behavior of a(n)/n and a transience property of the evolution.

1. Introduction

Since antiquity it has been intuited that the distribution of primes among the
natural numbers is in many ways random. For this reason, functions that reliably
generate primes have been revered for their apparent traction on the set of primes.

Ribenboim [11, page 179] provides three classes into which certain prime-generating
functions fall:

(a) f(n) is the nth prime pn.
(b) f(n) is always prime, and f(n) 6= f(m) for n 6= m.
(c) The set of positive values of f is equal to the set of prime numbers.

Known functions in these classes are generally infeasible to compute in practice.
For example, both Gandhi’s formula

pn =

1− log2

−1
2

+
∑
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[4], where Pn = p1p2 · · · pn, and Willans’ formula
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2n∑
i=1


 n∑i
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[13] satisfy condition (a) but are essentially versions of the sieve of Eratosthenes
[5, 6]. Gandhi’s formula depends on properties of the Möbius function µ(d), while
Willans’ formula is built on Wilson’s theorem. Jones [7] provided another formula
for pn using Wilson’s theorem.

Functions satisfying (b) are interesting from a theoretical point of view, although
all known members of this class are not practical generators of primes. The first
example was provided by Mills [10], who proved the existence of a real number A
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such that bA3nc is prime for n ≥ 1. The only known way of finding an approxi-
mation to a suitable A is by working backward from known large primes. Several
relatives of Mills’ function can be constructed similarly [2].

The peculiar condition (c) is tailored to a class of multivariate polynomials con-
structed by Matiyasevich [9] and Jones et al. [8] with this property. These results
are implementations of primality tests in the language of polynomials and thus also
cannot be used to generate primes in practice.

It is evidently quite rare for a prime-generating function to not have been ex-
pressly engineered for this purpose. One might wonder whether there exists a
nontrivial prime-generating function that is “naturally occurring” in the sense that
it was not constructed to generate primes but simply discovered to do so.

Euler’s polynomial n2 − n + 41 of 1772 is presumably an example; it is prime
for 1 ≤ n ≤ 40. Of course, in general there is no known simple characterization of
those n for which n2 − n + 41 is prime. So, let us revise the question: Is there a
naturally occurring function that always generates primes?

The subject of this paper is such a function. It is recursively defined and produces
a prime at each step, although the primes are not distinct as required by condition
(b).

The recurrence was discovered in 2003 at the NKS Summer School1, at which
I was a participant. Primary interest at the Summer School is in systems with
simple definitions that exhibit complex behavior. In a live computer experiment
led by Stephen Wolfram, we searched for complex behavior in a class of nested
recurrence equations. A group led by Matt Frank followed up with additional
experiments, somewhat simplifying the structure of the equations and introducing
different components. One of the recurrences they considered is

(1) a(n) = a(n− 1) + gcd(n, a(n− 1)).

They observed that with the initial condition a(1) = 7, for example, the sequence of
differences a(n)−a(n−1) = gcd(n, a(n−1)) (sequence A132199) appears chaotic [3].
When they presented this result, it was realized that, additionally, this difference
sequence seems to be composed entirely of 1s and primes:

1, 1, 1, 5, 3, 1, 1, 1, 1, 11, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 47, 3, 1, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 101, 3, 1, 1, 7, 1, 1, 1, 1, 11, 3, 1, 1, 1,

1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 233, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 467, 3, 1, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . .

1 The NKS Summer School (http://www.wolframscience.com/summerschool) is a three-week
program in which participants conduct original research informed by A New Kind of Science [14].

http://www.research.att.com/~njas/sequences/A132199
http://www.wolframscience.com/summerschool
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While the recurrence certainly has something to do with factorization (due to
the gcd), it was not clear why a(n) − a(n − 1) should never be composite. The
conjecture was recorded for the initial condition a(1) = 8 in sequence A084663.

The main result of the current paper is that, for small initial conditions, a(n)−
a(n− 1) is always 1 or prime. The proof is elementary; our most useful tool is the
fact that gcd(n,m) divides the linear combination rn+ sm for all integers r and s.

At this point the reader may object that the 1s produced by a(n) − a(n − 1)
contradict the previous claim that the recurrence always generates primes. How-
ever, there is some local structure to a(n), given by the lemma in Section 3, and the
length of a sequence of 1s can be determined at the outset. This provides a shortcut
to simply skip over this part of the evolution directly to the next nontrivial gcd.
By doing this, one produces the following sequence of primes (sequence A137613).

5, 3, 11, 3, 23, 3, 47, 3, 5, 3, 101, 3, 7, 11, 3, 13, 233, 3, 467, 3, 5, 3, 941, 3, 7, 1889, 3, 3779, 3,

7559, 3, 13, 15131, 3, 53, 3, 7, 30323, 3, 60647, 3, 5, 3, 101, 3, 121403, 3, 242807, 3, 5, 3, 19, 7,

5, 3, 47, 3, 37, 5, 3, 17, 3, 199, 53, 3, 29, 3, 486041, 3, 7, 421, 23, 3, 972533, 3, 577, 7, 1945649,

3, 163, 7, 3891467, 3, 5, 3, 127, 443, 3, 31, 7783541, 3, 7, 15567089, 3, 19, 29, 3, 5323, 7, 5, 3,

31139561, 3, 41, 3, 5, 3, 62279171, 3, 7, 83, 3, 19, 29, 3, 1103, 3, 5, 3, 13, 7, 124559609, 3, 107, 3,

911, 3, 249120239, 3, 11, 3, 7, 61, 37, 179, 3, 31, 19051, 7, 3793, 23, 3, 5, 3, 6257, 3, 43, 11, 3, 13,

5, 3, 739, 37, 5, 3, 498270791, 3, 19, 11, 3, 41, 3, 5, 3, 996541661, 3, 7, 37, 5, 3, 67, 1993083437,

3, 5, 3, 83, 3, 5, 3, 73, 157, 7, 5, 3, 13, 3986167223, 3, 7, 73, 5, 3, 7, 37, 7, 11, 3, 13, 17, 3, . . .

It certainly seems to be the case that larger and larger primes appear fairly
frequently. Unfortunately, these primes do not come for free: If we compute terms of
the sequence without the aforementioned shortcut, then a prime p appears only after
p−3

2 consecutive 1s, and indeed the primality of p is being established essentially by
trial division. As we will see, the shortcut is much better, but it requires an external
primality test, and in general it requires finding the smallest prime divisor of an
integer ∆. So although it is naturally occurring, the recurrence, like its artificial
counterparts, is not a magical generator of large primes.

We mention that Benoit Cloitre [1] has considered variants of Equation (1) and
has discovered several interesting results. A striking parallel to the main result of
this paper is that if

b(n) = b(n− 1) + lcm(n, b(n− 1))

with b(1) = 1, then b(n)/b(n − 1) − 1 (sequence A135506) is either 1 or prime for
each n ≥ 2.

2. Initial observations

In order to reveal several key features, it is worth recapitulating the experimental
process that led to the discovery of the proof that a(n) − a(n − 1) is always 1
or prime. For brevity, let g(n) = a(n) − a(n − 1) = gcd(n, a(n − 1)) so that
a(n) = a(n− 1) + g(n). Table 1 lists the first few values of a(n) and g(n) as well as
of the quantities ∆(n) = a(n − 1) − n and a(n)/n, whose motivation will become
clear presently. Additional features of Table 1 not vital to the main result are
discussed in Section 5.

http://www.research.att.com/~njas/sequences/A084663
http://www.research.att.com/~njas/sequences/A137613
http://www.research.att.com/~njas/sequences/A135506
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n ∆(n) g(n) a(n) a(n)/n

1 7 7

2 5 1 8 4
3 5 1 9 3

4 5 1 10 2.5

5 5 5 15 3
6 9 3 18 3

7 11 1 19 2.71429
8 11 1 20 2.5

9 11 1 21 2.33333

10 11 1 22 2.2
11 11 11 33 3

12 21 3 36 3

13 23 1 37 2.84615
14 23 1 38 2.71429

15 23 1 39 2.6

16 23 1 40 2.5
17 23 1 41 2.41176

18 23 1 42 2.33333

19 23 1 43 2.26316
20 23 1 44 2.2

21 23 1 45 2.14286
22 23 1 46 2.09091

23 23 23 69 3

24 45 3 72 3
25 47 1 73 2.92

26 47 1 74 2.84615

27 47 1 75 2.77778
28 47 1 76 2.71429

29 47 1 77 2.65517

30 47 1 78 2.6
31 47 1 79 2.54839

32 47 1 80 2.5

n ∆(n) g(n) a(n) a(n)/n

33 47 1 81 2.45455
34 47 1 82 2.41176

35 47 1 83 2.37143
36 47 1 84 2.33333

37 47 1 85 2.2973

38 47 1 86 2.26316
39 47 1 87 2.23077

40 47 1 88 2.2

41 47 1 89 2.17073
42 47 1 90 2.14286

43 47 1 91 2.11628

44 47 1 92 2.09091
45 47 1 93 2.06667

46 47 1 94 2.04348

47 47 47 141 3
48 93 3 144 3

49 95 1 145 2.95918
50 95 5 150 3

51 99 3 153 3

52 101 1 154 2.96154
53 101 1 155 2.92453

54 101 1 156 2.88889
...

...
...

...
...

99 101 1 201 2.0303
100 101 1 202 2.02

101 101 101 303 3

102 201 3 306 3
103 203 1 307 2.98058

104 203 1 308 2.96154

105 203 7 315 3
106 209 1 316 2.98113

Table 1. The first few terms for a(1) = 7.

One observes from the data that g(n) contains long runs of consecutive 1s. On
such a run, say if g(n) = 1 for n1 < n < n1 + k, we have

(2) a(n) = a(n1) +
n−n1∑
i=1

g(n1 + i) = a(n1) + (n− n1),

so the difference a(n) − n = a(n1) − n1 is invariant in this range. When the next
nontrivial gcd does occur, we see in Table 1 that it has some relationship to this
difference. Indeed, it appears to divide

∆(n) := a(n− 1)− n = a(n1)− 1− n1.

For example 3 | 21, 23 | 23, 3 | 45, 47 | 47, etc. This observation is easy to prove
and is a first hint of the shortcut mentioned in Section 1.

Restricting attention to steps where the gcd is nontrivial, one notices that a(n) =
3n whenever g(n) 6= 1. This fact is the central ingredient in the proof of the lemma,
and it suggests that a(n)/n may be worthy of study. We pursue this in Section 4.

Another important observation can be discovered by plotting the values of n for
which g(n) 6= 1, as in Figure 1. They occur in clusters, each cluster initiated by a
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Figure 1. Logarithmic plot of nj , the jth value of n for which
a(n)−a(n−1) 6= 1, for the initial condition a(1) = 7. The regular-
ity of the vertical gaps between clusters indicates local structure
in the sequence.

large prime and followed by small primes interspersed with 1s. The ratio between
the index n beginning one cluster and the index ending the previous cluster is very
nearly 2, which causes the regular vertical spacing seen when plotted logarithmi-
cally. With further experimentation one discovers the reason for this, namely that
when 2n− 1 = p is prime for g(n) 6= 1, such a “large gap” between nontrivial gcds
occurs (demarcating two clusters) and the next nontrivial gcd is g(p) = p. This
suggests looking at the quantity 2n − 1 (which is ∆(n + 1) when a(n) = 3n), and
one guesses that in general the next nontrivial gcd is the smallest prime divisor of
2n− 1.

3. Recurring structure

We now establish the observations of the previous section, treating the recur-
rence (1) as a discrete dynamical system on pairs (n, a(n)) of integers. We no longer
assume a(1) = 7; a general initial condition for the system specifies integer values
for n1 and a(n1).

Accordingly, we may broaden the result: In the previous section we observed
that a(n)/n = 3 is a significant recurring event; it turns out that a(n)/n = 2 plays
the same role for other initial conditions (for example, a(3) = 6). The following
lemma explains the relationship between one occurrence of this event and the next,
allowing the elimination of the intervening run of 1s. We need only know the
smallest prime divisor of ∆(n1 + 1).

Lemma. Let r ∈ {2, 3} and n1 ≥ 3
r−1 . Let a(n1) = rn1, and for n > n1 let

a(n) = a(n− 1) + gcd(n, a(n− 1))

and g(n) = a(n) − a(n − 1). Let n2 be the smallest integer greater than n1 such
that g(n2) 6= 1. Let p be the smallest prime divisor of

∆(n1 + 1) = a(n1)− (n1 + 1) = (r − 1)n1 − 1.
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Then
(a) n2 = n1 + p−1

r−1 ,
(b) g(n2) = p, and
(c) a(n2) = rn2.

Brief remarks on the condition (r − 1)n1 ≥ 3 are in order. Foremost, this
condition guarantees that the prime p exists, since (r − 1)n1 − 1 ≥ 2. However,
we can also interpret it as a restriction on the initial condition. We stipulate
a(n1) = rn1 6= n1 + 2 because otherwise n2 does not exist; note however that
among positive integers this excludes only the two initial conditions a(2) = 4 and
a(1) = 3. A third initial condition, a(1) = 2, is eliminated by the inequality; most
of the conclusion holds in this case (since n2 = g(n2) = a(n2)/n2 = 2), but because
(r − 1)n1 − 1 = 0 it is not covered by the following proof.

Proof. Let k = n2 − n1. We show that k = p−1
r−1 . Clearly p−1

r−1 is an integer if r = 2;
if r = 3 then (r − 1)n1 − 1 is odd, so p−1

r−1 is again an integer.
By Equation (2), for 1 ≤ i ≤ k we have g(n1 + i) = gcd(n1 + i, rn1 − 1 + i).

Therefore, g(n1 + i) divides both n1 + i and rn1 − 1 + i, so g(n1 + i) also divides
both their difference

(rn1 − 1 + i)− (n1 + i) = (r − 1)n1 − 1

and the linear combination

r · (n1 + i)− (rn1 − 1 + i) = (r − 1)i+ 1.

We use these facts below.
k ≥ p−1

r−1 : Since g(n1 +k) divides (r− 1)n1− 1 and by assumption g(n1 +k) 6= 1,
we have g(n1 + k) ≥ p. Since g(n1 + k) also divides (r − 1)k + 1, we have

p ≤ g(n1 + k) ≤ (r − 1)k + 1.

k ≤ p−1
r−1 : Now that g(n1+i) = 1 for 1 ≤ i < p−1

r−1 , we show that i = p−1
r−1 produces

a nontrivial gcd. We have

g(n1 + p−1
r−1 ) = gcd

(
n1 + p−1

r−1 , rn1 − 1 + p−1
r−1

)
= gcd

(
((r − 1)n1 − 1) + p

r − 1
,
r · ((r − 1)n1 − 1) + p

r − 1

)
.

By the definition of p, p | ((r − 1)n1 − 1) and p - (r − 1). Thus p divides both
arguments of the gcd, so g(n1 + p−1

r−1 ) ≥ p.
Therefore k = p−1

r−1 , and we have shown (a). On the other hand, g(n1 + p−1
r−1 )

divides (r− 1) · p−1
r−1 + 1 = p, so in fact g(n1 + p−1

r−1 ) = p, which is (b). We now have
g(n2) = p = (r − 1)k + 1, so to obtain (c) we compute

a(n2) = a(n2 − 1) + g(n2)

= (rn1 − 1 + k) + ((r − 1)k + 1)

= r(n1 + k)
= rn2. �

We immediately obtain the following result for a(1) = 7; one simply computes
g(2) = g(3) = 1, and a(3)/3 = 3 so the lemma applies inductively thereafter.



A natural prime-generating recurrence 7

Theorem. Let a(1) = 7. For each n ≥ 2, a(n)− a(n− 1) is 1 or prime.

Similar results can be obtained for many other initial conditions, such as a(1) =
4, a(1) = 8, etc. Indeed, most small initial conditions quickly produce a state in
which the lemma applies.

4. Transience

However, the statement of the theorem is false for general initial conditions.
Two examples of non-prime gcds are g(18) = 9 for a(1) = 532 and g(21) = 21 for
a(1) = 801. With additional experimentation one does however come to suspect
that g(n) is eventually 1 or prime for every initial condition.

Conjecture. If n1 ≥ 1 and a(n1) ≥ 1, then there exists an N such that a(n) −
a(n− 1) is 1 or prime for each n > N .

The conjecture asserts that the states for which the lemma of Section 3 does
not apply are transient. To prove the conjecture, it would suffice to show that
if a(n1) 6= n1 + 2 then a(N)/N is 1, 2, or 3 for some N : If a(N) = N + 2 or
a(N)/N = 1, then g(n) = 1 for n > N , and if a(N)/N is 2 or 3, then the lemma
applies inductively. Thus we should try to understand the long-term behavior of
a(n)/n. We give two propositions in this direction.

Empirical data show that when a(n)/n is large, it tends to decrease. The first
proposition states that a(n)/n can never cross over an integer from below.

Proposition 1. If n1 ≥ 1 and a(n1) ≥ 1, then a(n)/n ≤ da(n1)/n1e for all n ≥ n1.

Proof. Let r = da(n1)/n1e. We proceed inductively; assume that a(n−1)/(n−1) ≤
r. Then

rn− a(n− 1) ≥ r ≥ 1.

Since g(n) divides the linear combination r · n− a(n− 1), we have

g(n) ≤ rn− a(n− 1);

thus
a(n) = a(n− 1) + g(n) ≤ rn. �

From Equation (2) in Section 2 we see that g(n1 + i) = 1 for 1 ≤ i < k implies
that a(n1 + i)/(n1 + i) = (a(n1) + i)/(n1 + i), and so a(n)/n is strictly decreasing
in this range if a(n1) > n1. Moreover, if the nontrivial gcds are overall sufficiently
few and sufficiently small, then we would expect a(n)/n→ 1 as n gets large; indeed
the hyperbolic segments in Figure 2 have the line a(n)/n = 1 as an asymptote.

However, in practice we rarely see this occurring. Rather, a(n1)/n1 > 2 seems
to almost always imply that a(n)/n > 2 for all n ≥ n1. Why is this the case?

Suppose the sequence of ratios crosses 2 for some n: a(n)/n > 2 ≥ a(n+1)/(n+
1). Then

2 ≥ a(n+ 1)
n+ 1

=
a(n) + gcd(n+ 1, a(n))

n+ 1
≥ a(n) + 1

n+ 1
,

so a(n) ≤ 2n + 1. Since a(n) > 2n, we are left with a(n) = 2n + 1; and indeed in
this case we have

a(n+ 1)
n+ 1

=
2n+ 1 + gcd(n+ 1, 2n+ 1)

n+ 1
=

2n+ 2
n+ 1

= 2.
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Figure 2. Plot of a(n)/n for a(1) = 7. Proposition 2 establishes
that a(n)/n > 2.

The task at hand, then, is to determine whether a(n) = 2n + 1 can happen in
practice. That is, if a(n1) > 2n1+1, is there ever an n > n1 such that a(n) = 2n+1?
Working backward, let a(n) = 2n+ 1. We will consider possible values for a(n−1).

If a(n− 1) = 2n, then

2n+ 1 = a(n) = 2n+ gcd(n, 2n) = 3n,

so n = 1. The state a(1) = 3 is produced after one step by the initial condition
a(0) = 2 but is a moot case if we restrict to positive initial conditions.

If a(n− 1) < 2n, then a(n− 1) = 2n− j for some j ≥ 1. Then

2n+ 1 = a(n) = 2n− j + gcd(n, 2n− j),
so j + 1 = gcd(n, 2n− j) divides 2 · n− (2n− j) = j. This is a contradiction.

Thus for n > 1 the state a(n) = 2n + 1 only occurs as an initial condition, and
we have proved the following.

Proposition 2. If n1 ≥ 1 and a(n1) > 2n1 + 1, then a(n)/n > 2 for all n ≥ n1.

In light of these propositions, the largest obstruction to the conjecture is showing
that a(n)/n cannot remain above 3 indefinitely. Unfortunately, this is a formidable
obstruction:

The only distinguishing feature of the values r = 2 and r = 3 in the lemma is
the guarantee that p−1

r−1 is an integer, where p is again the smallest prime divisor
of (r − 1)n1 − 1. If r ≥ 4 is an integer and (r − 1) | (p − 1), then the proof goes
through, and indeed it is possible to find instances of an integer r ≥ 4 persisting for
some time; in fact a repetition can occur even without the conditions of the lemma.
Searching in the range 1 ≤ n1 ≤ 104, 4 ≤ r ≤ 20, one finds the example n1 = 7727,
r = 7, a(n1) = rn1 = 54089, in which a(n)/n = 7 reoccurs eleven times (the last
at n = 7885).

The evidence suggests that there are arbitrarily long such repetitions of integers
r ≥ 4. With the additional lack of evidence of global structure that might control
the number of these repetitions, it is possible that, when phrased as a parame-
terized decision problem, the conjecture becomes undecidable. Perhaps this is not
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altogether surprising, since the experience with discrete dynamical systems (not
least of all the Collatz 3n + 1 problem) is frequently one of presumed inability to
significantly shortcut computations.

The next best thing we can do, then, is speed up computation of the transient
region so that one may quickly establish the conjecture for specific initial conditions.
It is a pleasant fact that the shortcut of the lemma can be generalized to give
the location of the next nontrivial gcd without restriction on the initial condition,
although naturally we lose some of the benefits as well.

In general one can interpret the evolution of Equation (1) as repeatedly comput-
ing for various n and a(n−1) the minimal k ≥ 1 such that gcd(n+k, a(n−1)+k) 6= 1,
so let us explore this question in isolation. Let a(n− 1) = n+ ∆ (with ∆ ≥ 1); we
seek k. (The lemma determines k for the special cases ∆ = n− 1 and ∆ = 2n− 1.)

Clearly gcd(n+ k, n+ ∆ + k) divides ∆.
Suppose ∆ = p is prime; then we must have gcd(n + k, n + p + k) = p. This

is equivalent to k ≡ −n mod p. Since k ≥ 1 is minimal, then k = mod1(−n, p),
where modj(a, b) is the unique number x ≡ a mod b such that j ≤ x < j + b.

Now consider a general ∆. A prime p divides gcd(n+ i, n+ ∆ + i) if and only if
it divides both n+ i and ∆. Therefore

{ i : gcd(n+ i, n+ ∆ + i) 6= 1 } =
⋃
p|∆

(−n+ pZ).

Calling this set I, we have

k = min { i ∈ I : i ≥ 1 } = min {mod1(−n, p) : p | ∆ }.

Therefore (as we record in slightly more generality) k is the minimum of mod1(−n, p)
over all primes dividing ∆.

Proposition 3. Let n ≥ 0, ∆ ≥ 2, and j be integers. Let k ≥ j be minimal such
that gcd(n+ k, n+ ∆ + k) 6= 1. Then

k = min {modj(−n, p) : p is a prime dividing ∆ }.

5. Primes

We conclude with several additional observations that can be deduced from the
lemma regarding the prime p that occurs as g(n2) under various conditions.

We return to the large gaps observed in Figure 1. A large gap occurs when
(r − 1)n1 − 1 = p is prime, since then n2 − n1 = p−1

r−1 is maximal. In this case we
have n2 = 2p

r−1 , so since n2 is an integer and p > r−1 we also see that (r−1)n1−1
can only be prime if r is 2 or 3. Thus large gaps only occur for r ∈ {2, 3}.

Table 1 suggests two interesting facts about the beginning of each cluster of
primes after a large gap:

• p = g(n2) ≡ 5 mod 6.
• The next nontrivial gcd after p is always g(n2 + 1) = 3.

The reason is that when r = 3, eventually we have a(n) ≡ n mod 6, with exceptions
only when g(n) ≡ 5 mod 6 (in which case a(n) ≡ n + 4 mod 6). In the range
n1 < n < n2 we have g(n) = 1, so p = 2n1 − 1 = ∆(n) = a(n− 1)− n ≡ 5 mod 6
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and

g(n2 + 1) = gcd(n2 + 1, a(n2))

= gcd(p+ 1, 3p)
= 3.

An analogous result holds for r = 2 and n1 − 1 = p prime: g(n2) = p ≡ 5 mod 6,
g(n2 + 1) = 1, and g(n2 + 2) = 3.

In fact, this analogy suggests a more general similarity between the two cases
r = 2 and r = 3: An evolution for r = 2 can generally be emulated (and actually
computed twice as quickly) by r′ = 3 under the transformation

n′ = n/2,

a′(n′) = a(n)− n/2

for even n (discarding odd n). One verifies that the conditions and conclusions of
the lemma are preserved; in particular

a′(n′)
n′

= 2 · a(n)
n
− 1.

For example, the evolution from initial condition a(4) = 8 is emulated by the
evolution from a′(1) = 7 for n = 2n′ ≥ 6.

One wonders whether g(n) takes on all primes. For r = 3, clearly the case p = 2
never occurs since 2n1 − 1 is odd. Furthermore, for r = 2, the case p = 2 can only
occur once for a given initial condition: A simple checking of cases shows that n2

is even, so applying the lemma to n2 we find n2 − 1 is odd (at which point the
evolution can be emulated by r′ = 3).

We conjecture that all other primes occur. After ten thousand applications of
the shortcut starting from the initial condition a(1) = 7, the smallest odd prime
that has not yet appeared is 587.

For general initial conditions the results are similar, and one quickly notices
that evolutions from different initial conditions frequently converge to the same
evolution after some time, reducing the number that must be considered. For
example, a(1) = 4 and a(1) = 7 converge after two steps to a(3) = 9. One can
use the shortcut to feasibly track these evolutions for large values of n and thereby
estimate the density of distinct evolutions. In the range 22 ≤ a(1) ≤ 213 one finds
that there are only 203 equivalence classes established below n = 223, and no two of
these classes converge below n = 260. It therefore appears that disjoint evolutions
are quite sparse. Sequence A134162 is the sequence of minimal initial conditions
for these equivalence classes.
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