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Abstract. Two words p and q are avoided by the same number of
length-n words, for all n, precisely when p and q have the same set of
border lengths. Previous proofs of this theorem use generating functions
but do not provide an explicit bijection. We give a bijective proof for
all pairs p, q that have the same set of proper borders, establishing a
natural bijection from the set of words avoiding p to the set of words
avoiding q.

1. Introduction

Combinatorialists have studied pattern avoidance in multiple contexts.
In this paper, we are interested in the avoidance of contiguous patterns
in words. We say that a word w avoids a word p if w does not contain
a contiguous occurrence of p. We refer to the word p as a pattern. For
example, the word 010 avoids the pattern 00 but does not avoid 10. Let N
denote the set of non-negative integers.

Definition 1.1. Let p and q be two words on a finite alphabet Σ. Define

An(p) = {w ∈ Σn : w avoids p}.
The words p and q are avoidant-equivalent if |An(p)| = |An(q)| for all n ∈ N.

This notion of equivalence is analogous toWilf equivalence for non-contiguous
permutation patterns, which has been studied extensively. When two permutation
patterns are avoided by the same number of permutations, researchers seek a
bijective explanation. See for example the survey by Claesson and Kitaev [1]
of bijections between permutations that avoid 321 and permutations that
avoid 132.

Analogously, when two words p, q are avoidant-equivalent, we would like
a natural bijection from An(p) to An(q) for each n, since this provides a
combinatorial explanation for the equivalence and therefore a deeper understanding
of the relationship between these two structures. One can obtain a trivial
bijection from An(p) to An(q) by first sorting the two sets lexicographically
and then mapping the ith word of An(p) to the ith word of An(q). However,
this bijection is mostly arbitrary; it assumes we already know that |An(p)| =
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|An(q)|, and it is computationally intensive, since computing the image of
a particular word requires first computing the complete sets An(p) and
An(q). In this paper, we establish a more natural bijection for many pairs of
patterns. In particular, our bijection provides a new proof of avoidant-equivalence
for these pairs.

A sufficient condition for two patterns to be avoidant-equivalent has essentially
been known since the work of Solov’ev [8], who determined the expected time
required for a pattern p to appear in a word built randomly letter by letter.
Solov’ev showed that the expected time depends only on the lengths of the
borders of p.

Definition 1.2. Let p be a word. A non-empty word x is a border of p if x
is both a prefix and a suffix of p. Let

b(p) = {|x| : x is a border of p}.
We call b(p) the border length set of p. A non-empty word x is a proper
border of p if x is a border of p and x ̸= p.

Example. Let Σ = {0, 1}. The borders of p = 0110 are 0 and 0110. These
borders can be thought of as the ways p can overlap itself:

0110

0110

0110

0110

0110

0110

0110

0110

The border length set is b(0110) = {1, 4}. The only proper border of p is 0.

It follows from the paper of Solov’ev, and more explicitly from the work of
Guibas and Odlyzko [3], that if b(p) = b(q) then p and q are avoidant-equivalent.
Moreover, Guibas and Odlyzko give a method for computing the generating
function of the number of words avoiding a pattern (or set of patterns). Let
k = |Σ| be the size of the alphabet, let l = |p|, and define the polynomial
B(x) =

∑
i∈b(p) x

l−i. Then

(1)
∑
n≥0

|An(p)|xn =
B(x)

(1− kx)B(x) + xl
.

This generating function was obtained by Kim, Putcha, and Roush [5] and
Zeilberger [9]. It can also be obtained by the Goulden–Jackson cluster
method [2]; see the treatment by Noonan and Zeilberger [6] for a friendly
introduction.

Example. For the word p = 0110, the border length set is b(p) = {1, 4}.
For q = 1011, we have b(q) = {1, 4} as well. Therefore b(p) = b(q), and the

series expansion of x3+1
1−2x+x3−x4 gives the sizes of both An(p) and An(q) for

all n ∈ N. In particular, p and q are avoidant-equivalent.

The main result of this paper (Theorem 3.1) is the following. Suppose p
and q are words on a finite alphabet Σ. If the set of proper borders of p is
equal to the set of proper borders of q, then the map ϕL, which is defined
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in Section 2 and iteratively replaces occurrences of q with p, is a bijection
from An(p) to An(q) for all n. Note that here the condition is that the sets
of proper borders themselves are equal, as opposed to the sets of border
lengths.

For words on the binary alphabet Σ = {0, 1}, there are 103764 pairs of
length-10 avoidant-equivalent patterns, and our theorem provides a bijection
for 71058 of these pairs. Additionally, there are two types of trivial bijections
— left–right reversal and permutations of Σ. Compositions of all these
bijections provide bijections for 103460 pairs, which is 99.7% of avoidant-equivalent
pairs of length-10 patterns. See Section 3.1 and Table 1 for more data. The
smallest pair of avoidant-equivalent patterns on {0, 1} for which we do not
have a natural bijection is 0010010 and 0110110, which have a border length
set of {1, 4, 7}.

Example. Let p = 1001 and q = 1101. Since p and q have the same set of
proper borders, namely {1}, the replacement function ϕL forms a bijection
from An(p) to An(q). We would also like a bijection from An(0110) to An(q),
since b(0110) = {1} = b(q). The patterns 0110 and q do not have the same
set of proper borders, since 0 is a border of 0110 but is not a border of q.
However, if we let σ be the letter permutation function, which replaces 0’s
with 1’s and 1’s with 0’s, then σ forms a bijection from An(0110) to An(p).
Therefore the composition ϕL ◦ σ is a bijection from An(0110) to An(q).

We mention that the sufficient condition b(p) = b(q) for the patterns p, q
to be avoidant-equivalent is also necessary. This follows from the rational
generating function in Equation (1), which provides a linear recurrence
satisfied by |An(p)|. Namely, let k = |Σ| and l = |p| again, and let
s(n) = |An(p)|. Then

s(n) = k s(n− 1)− s(n− l) +
∑
i∈b(p)
i ̸=l

(
k s(n+ i− l − 1)− s(n+ i− l)

)
.

Using this recurrence, one can show that if b(p) ̸= b(q) then the sequence
(|An(p)|)n≥0 first differs from (|An(q)|)n≥0 at

n =

{
min(|p|, |q|) if |p| ≠ |q|
2|p| −max

(
b(p)△ b(q)

)
if |p| = |q|

where △ denotes symmetric difference. Therefore, the patterns p and q are
avoidant-equivalent if and only if b(p) = b(q).

In Section 2, we define replacement functions ϕL and ϕR. Section 3
is dedicated to proving the main theorem, namely that ϕL establishes a
bijection from An(p) to An(q) under the condition that the proper borders
of p and q are identical.
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2. Replacement functions

In this section, we define the function ϕL that, under certain conditions,
gives a bijection ϕL : An(p) → An(q) in Section 3. The general idea is to
systematically replace each occurrence of q in a word with p. We accomplish
this with an iterative replacement process. We will define ϕL to take a
p-avoiding word and scan from left to right looking for occurrences of q. If
it finds q, it replaces the first occurrence of q with p and then starts the
left-to-right scan over. The replacement process ends when no more q’s
remain. We will prove in Lemma 2.3 below that this process terminates.

In the following definitions, we assume that we have two patterns p and
q such that b(p) = b(q). In particular, |p| = |q|. Let fk(w) be the word
obtained by iteratively applying k iterations of the function f to w.

Definition 2.1. For a given p-avoiding word w, the single scan function L
replaces the leftmost q in w with p. If no q exists, L acts as the identity
function. Define ϕL(w) = Li(w), where i is the least non-negative integer
such that Li(w) contains no q’s.

Even though we are scanning left to right, a replacement in one position
can be followed by a replacement to its left, as the following example shows.

Example. Let p = 011 and q = 001. The iterative replacement process of
ϕL on the word 0001001 ∈ A7(p) is as follows:

0001001
L7→ 0011001

= 0011001
L7→ 0111001

= 0111001
L7→ 0111011

= 0111011.

Thus, ϕL(0001001) = 0111011. We have 0111011 ∈ A7(q) as desired.

To prove that ϕL forms a bijection from An(p) to An(q), we will prove
that there exists a natural inverse function ϕR. To this end, we define the
functions R and ϕR, which are built to undo their counterparts L and ϕL.

Definition 2.2. For a given q-avoiding word w, the single scan function R
replaces the rightmost p in w with q. If no p exists, R acts as the identity
function. Define ϕR(w) = Rj(w), where j is the least non-negative integer
such that Rj(w) contains no p’s.

Example. Using p = 011 and q = 001 as in the previous example, one
checks that ϕR(0111011) = 0001001, so ϕR(ϕL(0001001)) = 0001001.

Lemma 2.3. Let p and q be equal-length patterns such that p ̸= q, and let
n ∈ N. For every w ∈ An(p), we have ϕL(w) ∈ An(q).

Proof. Since p ̸= q, either p < q or p > q lexicographically. Assume p < q,
since the other case is analogous. If w contains q, then L(w) < w. Therefore,
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iteratively applying L produces lexicographically smaller words until the
image no longer contains q. Since there are only finitely many length-n
words on Σ, this happens after finitely many steps, at which point we have
a word in An(q). □

For a word w, we define w to be the reverse of w. Let L be the function
that replaces the leftmost occurrence of p in a word with q. Similarly, let R
be the function that replaces the rightmost q in a word with p.

Definition 2.4. We now define the functions ϕL : An(q̄) → An(p̄) and

ϕR : An(p̄) → An(q̄) in a similar fashion to ϕL and ϕR. Define ϕL = L
i
(w),

where i is the least non-negative integer such that L
i
(w) contains no p’s.

Define ϕR = R
j
(w), where j is the least non-negative integer such that

R
j
(w) contains no q’s.

Lemma 2.5. Let w ∈ An(p) and v ∈ An(q). We have

ϕR(v) = ϕL(v)(2)

ϕL(w) = ϕR(w).(3)

Intuitively, Equation (3) says the functions ϕL and ϕR are conjugate under
word reversal.

Example. Let p = 011 and q = 001, and let w = 0001001. We will
show Equation (3) holds. An example above shows the computation of

ϕL(w) = 0111011. Next we evaluate ϕR(w). Firstly, we have w = 1001000.
Secondly, we evaluate ϕR(w). Recall that ϕR will scan right to left replacing
q’s with p’s. The iterative replacement gives

1001000
R7→ 1001100

= 1001100
R7→ 1001110

= 1001110
R7→ 1101110

= 1101110.

This shows ϕR(w) = 1101110. Since 1101110 = 0111011, we have that

ϕR(w) = 0111011 as expected.

Proof of Lemma 2.5. We prove Equation (2) by induction on the number of
replacement steps, denoted k. Then Equation (3) will follow by symmetry.

Let j be the number of steps required by ϕR applied to v. We set out to
show

(4) Rk(v) =
(
L
k
(v)
)
,

for 0 ≤ k ≤ j. It helps to first establish that, for any v that still has some p
to replace, we have

(5) R(v) =
(
L(v)

)
.
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To see why this is true, observe that replacing the rightmost p is equivalent
to

• reversing the word,
• replacing the leftmost p̄, and then
• reversing again.

For the base case, the left-hand side of Equation (4) equals v because,

when k = 0, there are no p’s to replace in v. Similarly,
(
L
k
(v)
)
=
(
v
)
= v,

because there are no p̄’s to replace in v.
Inductively, assume Equation (4) holds for some value of k where 0 ≤ k <

j. We have(
L
k+1

(v)
)
= L

(
L
k
(v)
)

= L
(
Rk(v)

)
by the inductive hypothesis

= R
(
Rk(v)

)
using Equation (5)

= Rk+1(v).

This establishes Equation (4), which gives us Equation (2). □

3. The main theorem

With all this background, we are ready for the main result of the paper.

Theorem 3.1. Let Σ be a finite alphabet, and let p and q be distinct,
equal-length words on Σ. If the set of proper borders of p is equal to the
set of proper borders of q, then ϕL : An(p) → An(q) forms a bijection for all
n ∈ N.

For example, the set of proper borders for each of the words 0100 and
0110 is {0}. On the other hand, 0110 and 1011 do not have the same set of
proper borders, despite b(0110) = {1, 4} = b(1011).

Remark. Let w ∈ An(p). Observe that if w also avoids q then ϕL acts
as the identity map on w. Therefore, Theorem 3.1 implies that words that
avoid p and contain q are in bijection with words that avoid q and contain
p.

A natural question is whether the number of q’s in w is equal to the
number of p’s in ϕL(w). While this is usually the case, there do exist
counterexamples. For example, let p = 001, q = 110, and w = 1101110.
After 3 replacements, we see that ϕL(w) = 0000101.

By Lemma 2.3, we have that ϕL is a map from An(p) to An(q). To
prove Theorem 3.1, it suffices to show that ϕL is a bijection. To do this, we
will show that ϕR is its inverse function, namely that ϕR

(
ϕL(w)

)
= w for

w ∈ An(p) and also that ϕL

(
ϕR(w)

)
= w for w ∈ An(q). More specifically,

we show that each one-step replacement L that takes place in ϕL(w) is
undone by a one-step replacement R.
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Proof of Theorem 3.1. Let n ∈ N and w ∈ An(p). Let i be the number
of steps required by ϕL applied to w. We will show by induction that
Lk−1(w) = R

(
Lk(w)

)
for all k satisfying 1 ≤ k ≤ i, so that R is the left

inverse of L. It will then follow that ϕR

(
ϕL(w)

)
= w. Let v ∈ An(q); then

ϕL

(
ϕR(v)

)
= ϕL

(
ϕL(v)

)
by Equation (2)

= ϕR

(
ϕL(v)

)
by Equation (3), letting w =

(
ϕL(v)

)
=
(
v
)

because ϕR is the left inverse of ϕL

= v.

Thus, we will have also shown that ϕL

(
ϕR(v)

)
= v, so that ϕR is both the

left inverse and right inverse of ϕL. It will follow that ϕL : An(p) → An(q)
is a bijection.

It remains to prove that Lk−1(w) = R
(
Lk(w)

)
. For the base case k = 1,

the left-hand side of Lk−1(w) = R
(
Lk(w)

)
is equivalent to applying zero L

operations on w, so it trivially equals w. The right-hand side of this equation
is R

(
L(w)

)
. We denote the new p inserted by L as p̂. We claim that p̂ is

the rightmost p in L(w); then the R step function will find it first and will
replace p̂ back with a q.

To prove the claim, assume that p̂ is not rightmost in L(w). Then there
is a p to the right of p̂. If this p does not overlap p̂, then it would have
also been present in w. But w is p-avoiding; therefore p must overlap p̂. We
denote the overlap in L(w) as x:

w:

leftmost q x

p

L(w):

p̂ x

p

The overlap x is a border of p. Observe that since p and q have the same
borders, the border segment x is also in w as a suffix of q. This means that x
wasn’t altered when we swapped in p̂. This implies that the overlapping p is
also in w. This contradicts our assumption that w is p-avoiding. Therefore,
p̂ is the rightmost p in L(w), implying that Lk−1(w) = R

(
Lk(w)

)
holds for

k = 1.
Inductively, assume that Lk−2(w) = R

(
Lk−1(w)

)
for some k between 1

and the number of steps required by ϕL. This assumption means that once
we replace the leftmost q in Lk−2(w) with p, this new pmust be the rightmost
p in Lk−1(w) because we assumed that the R function maps Lk−1(w) back
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to Lk−2(w) (the R function scans from right to left); this is indicated by
an arrow in each direction in the diagram below. To show the inductive
hypothesis holds for k + 1, we need to show this same relationship holds
between words Lk−1(w) and Lk(w). Thus, we wish to show that, once
we replace the leftmost q in Lk−1(w) with p, this new p in Lk(w) is the
rightmost. The proof is split into four cases based on the possible positions
of the leftmost q in the word Lk−1(w).

Lk−2(w):

leftmost q

Lk−1(w):

rightmost pCase 1

leftmost q

Case 2

leftmost q

Case 3

leftmost q

Case 4

leftmost q

Lk(w):

Case 1. This position of q in Lk−1(w) implies that there is a q in the same
position in Lk−2(w). But then we have a q to the left of the leftmost q in
Lk−2(w), a contradiction.
Case 2. Let x be the overlap of the leftmost q and the rightmost p in
Lk−1(w). Suppose first that x is a border of q. We use a similar argument
as in the base case. Since x did not change from Lk−2(w) to Lk−1(w), there
must exist a q in the same spot in Lk−2(w). This q is left of the leftmost q
in Lk−2(w), so we have a contradiction.

Lk−2(w):

leftmost q

q

x

Lk−1(w):

rightmost pCase 2

leftmost q

x
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Suppose instead that x is not a border of q and therefore not a border of
p. Toward a contradiction, assume that p̂ is not the rightmost p in Lk(w).
For this to occur, p̂ must be overlapping with another p on its right. We
label this overlap segment b. Observe that b is a border of p and q. In
particular, b is a suffix of the leftmost q and a prefix of the rightmost p in
Lk−1(w). If |b| > |x|, it would follow that x is both a prefix and suffix of b.
This would imply x is a border of p, a contradiction.

Lk−1(w):

rightmost p

b

b

Case 2

leftmost q

x

Lk(w):

p̂

p

b

So it must be that |b| < |x|. Notice that the overlapping p in Lk(w) must
have existed in the same position in Lk−1(w) since b was left unchanged
when p̂ was swapped in. This puts a p to the right of the rightmost p in
Lk−1(w), another contradiction.

Lk−1(w):

rightmost pCase 2

leftmost q

x

b

p

Lk(w):

p̂

p

b

Case 3. Suppose for contradiction that p̂ is not the rightmost p in Lk(w).
Then p̂ must overlap with another p to its right. We label the overlap x in
the diagram below. Since x is a border of p, it is a border of q. Hence x was
left unchanged when p̂ was substituted in. This implies that the p to the
right of p̂ must have existed in the previous word Lk−1(w). But this puts a
p to the right of the rightmost p in Lk−1(w), a contradiction.
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Lk−1(w):

rightmost p

leftmost q

x p

Lk(w): p̂ p

x

Case 4. Case 4 follows using the same argument as in Case 3. □

We contextualize the proof with an example and a counterexample.

Example. Let p = 0110 and q = 0010. Note that the set of proper borders
for both p and q is {0}, so ϕL is a bijection from An(p) to An(q). Let
w = 1001001011 ∈ A10(p). This example demonstrates how each single scan
function L is undone by the function R. Observe that the first replacement
aligns with the base case of the proof for Theorem 3.1, while the second
replacement aligns with Case 3B. Running ϕL on w gives

1001001011
L7→ 1011001011

= 1011001011
L7→ 1011011011

= 1011011011.

Now we will run ϕL(w) = 1011011011 through ϕR to see that we get w back.
We also see that single scan R successfully undoes every replacement made
by an L. This gives us

1011011011
R7→ 1001011011

= 1001011011
R7→ 1001001011

= 1001001011 = w.

Example. We now present a short counterexample. Let p = 1011 and
q = 0100. Note that b(p) = {1, 4} = b(q), but 1 is a proper border of p and
not a proper border of q. So, Theorem 3.1 does not guarantee ϕL will form
a bijection from An(p) to An(q). For the word w1 = 0101011 ∈ A7(p), we
have

0101011
L7→ 0100100 = 0100100.

For another word w2 = 1011100 ∈ A7(p), we have

1011100
L7→ 0100100 = 0100100.

Observe that ϕL(w1) = 0100100 = ϕL(w2) so that ϕL does not provide a
bijection.
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3.1. How many bijections do we obtain? One might wonder how many
of the possible bijections ϕL provides. We know that ϕL forms a bijection
from An(p) to An(q) if b(p) = {|p|} = b(q). Words with no proper borders,
such as these, are known as borderless words. The density of borderless
words on a finite alphabet has been analyzed in detail. Silberger [7] first
discovered a recursive formula to count borderless words, and Holub &
Shallit [4] investigated the probability that a random word is borderless.
Notably, a long binary word p chosen randomly has ≈ 27% chance of being
borderless and ≈ 30% chance of having the border length set {1, |p|}. The
function ϕL provides a bijection for all borderless pairs and almost half of
the pairs whose border length set is {1, |p|}. These cases alone account for
a sizable chunk of possible avoidant-equivalent word pairs, which is why the
percentage of pairs for which we have natural bijections is so high.

Pattern length ϕL bijection pairs
Composition

bijection pairs
Equivalent pairs

1 1 1 1
2 1 2 2
3 6 8 8
4 21 32 32
5 88 120 120
6 312 460 460
7 1212 1708 1716
8 4649 6764 6780
9 18264 26072 26168

10 71058 103460 103764
11 279946 403836 405404
12 1107836 1613132 1618556

Table 1. Summary of bijections between patterns on {0, 1}.

Table 1 contains data on the number of pairs of patterns on Σ = {0, 1}
for which we have a natural bijection. The “Equivalent pairs” column gives
the total number of unordered pairs of patterns p and q for which b(p) =
b(q). The second column counts pairs for which ϕL establishes a bijection.
Additionally, if we allow compositions with the reversal function and letter
permutation function, we are able to obtain even more bijections; these pairs
are counted in the third column.

Acknowledgements

We thank the 2022 NYC Discrete Math REU for fostering a vibrant
mathematical community rich in intellectual stimulation and gracious friendship
alike. We extend our gratitude to the anonymous referee for the careful
reading and valuable comments.



12 JULIA CARRIGAN, ISAIAH HOLLARS, AND ERIC ROWLAND

References

[1] Anders Claesson and Sergey Kitaev. Classification of bijections between 321- and
132-avoiding permutations. Sém. Lothar. Combin., 60:Art. B60d, 30, 2008/09.

[2] I. P. Goulden and D. M. Jackson. An inversion theorem for cluster decompositions of
sequences with distinguished subsequences. J. London Math. Soc. (2), 20(3):567–576,
1979.

[3] L. J. Guibas and A. M. Odlyzko. String overlaps, pattern matching, and nontransitive
games. J. Combin. Theory Ser. A, 30(2):183–208, 1981.

[4] Štěpán Holub and Jeffrey Shallit. Periods and borders of random words. In 33rd
Symposium on Theoretical Aspects of Computer Science, volume 47 of LIPIcs. Leibniz
Int. Proc. Inform., pages Art. No. 44, 10. Schloss Dagstuhl. Leibniz-Zent. Inform.,
Wadern, 2016.

[5] Ki Hang Kim, Mohan S. Putcha, and Fred W. Roush. Some combinatorial properties
of free semigroups. J. London Math. Soc., s2-16(3):397–402, 1977.

[6] John Noonan and Doron Zeilberger. The Goulden–Jackson cluster method: extensions,
applications and implementations. J. Differ. Equations Appl., 5(4-5):355–377, 1999.

[7] D. M. Silberger. How many unbordered words? Comment. Math. Prace Mat.,
22(1):143–145, 1980.

[8] A. D. Solov’ev. A combinatorial identity and its application to the problem concerning
the first occurrence of a rare event. Theory of Probability & Its Applications,
11(2):276–282, 1966.

[9] Doron Zeilberger. Enumeration of words by their number of mistakes. Discrete
Mathematics, 34(1):89–91, 1981.

Mathematics Department, Occidental College, Los Angeles, CA, USA

Mathematics Department, University of South Carolina, Columbia, SC,
USA

Department of Mathematics, Hofstra University, Hempstead, NY, USA


	1. Introduction
	2. Replacement functions
	3. The main theorem
	3.1. How many bijections do we obtain?

	Acknowledgements
	References

