
A Case Study in Meta-AUTOMATION:

AUTOMATIC Generation of Congruence AUTOMATA For Combinatorial Sequences

Eric ROWLAND and Doron ZEILBERGER

Abstract: In this paper, that may be considered a sequel to a recent article by Eric Rowland

and Reem Yassawi, we present yet another approach for the automatic generation of automata

(and an extension that we call Congruence Linear Schemes) for the fast (log-time) determination

of congruence properties, modulo small (and not so small!) prime powers, for a wide class of

combinatorial sequences. Even more interesting than the new results that could be obtained, is the

illustrated methodology, that of designing ‘meta-algorithms’ that enable the computer to develop

algorithms, that it (or another computer) can then proceed to use to actually prove (potentially!)

infinitely many new results. This paper is accompanied by a Maple package, AutoSquared, and

numerous sample input and output files, that readers can use as templates for generating their

own, thereby proving many new ‘theorems’ about congruence properties of many famous (and, of

course, obscure) combinatorial sequences.

Very Important: This article is accompanied by the general Maple package

http://www.math.rutgers.edu/~zeilberg/tokhniot/AutoSquared ,

and several other specific ones, and numerous input and output files that are obtainable, by one

click, from the webpage (“front”) of this article

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/meta.html .

They could (and should!) be used as templates for generating as many input files that the human

would care to type, and that the computer would agree to run.

Prologue: What are the Last Three (Decimal) Digits of the Googol-th Catalan,

Motzkin, and Delannoy Numbers?

We will never know all the (decimal) digits of the Googol-th terms of the famous Catalan, Motzkin,

and (Central) Delannoy sequences [http://oeis.org/A000108, http://oeis.org/A001006, and

http://oeis.org/A001850, respectively], if nothing else because our computers are not big enough

to store them!

But thanks to the Maple packages accompanying this article, we know for sure that the last three

digits are 000, 187, and 281 respectively. These packages can compute in logarithmic time (i.e.

linear in the number of digits of the input) the values of the n-th term modulo many different m

(but alas, not too big!). These fast algorithms were generated by a meta-algorithm implemented in

the main Maple package, AutoSquared.

1

Fast Exponentiation

E-commerce is possible (via RSA) thanks to the fact that it is very easy (for computers!) to compute

an mod m ,

for a and m several-hundred-digits long, and large n. Reminding you that an is shorthand for the

sequence, let’s call it xn defined by the linear recurrence equation with constant coefficients,

of order one:

xn − axn−1 = 0 , x0 = 1 .

In order to compute x10100 mod m, you don’t compute all the 10100 previous terms, but use the

implied recurrences

x2n = x2n mod m , x2n+1 = ax2n mod m .

This takes only log2 10100 operations!

What about sequences defined by higher-order recurrences, but still with constant coefficients? For

example, what are the last three decimal digits of the googol-th Fibonacci number, F10100? You

would get the answer, 875, in 0.008 seconds!

All you need is type

Fnm(10**100, 1000); ,

once you typed (or copied-and-pasted) the following short code into a Maple session:

Fnm:=proc(n, m) option remember;

if n = 1 or n = 2 then 1

elif n mod 2 = 0 then Fnm(1/2*n, m)*(Fnm(1/2*n + 1, m) + Fnm(1/2*n - 1, m)) mod m

else Fnm(1/2*n - 1/2, m)**2 + Fnm(1/2*n + 1/2, m)**2 mod m

fi:

end:

It implements the (nonlinear) recurrence scheme

F2n = Fn(Fn−1 + Fn+1) , F2n+1 = F 2
n + F 2

n+1 , F1 = 1 , F2 = 1 ,

and of course takes it modulo m at every step.

Another way is to take the (1, 2) entry of the matrix

(
1 1
1 0

)10100

mod 1000 ,

and use the ‘iterated-squaring’ trick applied to matrix (rather than scalar) exponentiation.

2

Both these simple methods are applicable for the fast (linear-in-bit-size) computation of the terms,

modulo any m, of any integer sequence defined in terms of a linear recurrence equation with con-

stant coefficients (aka C-finite integer sequences).

But what about sequences that are defined via linear recurrence equations with polynomial coef-

ficients, aka P-recursive sequences, aka holonomic sequences?

In a beautiful and deep paper ([KKM]), dedicated to one of us (DZ) on the occasion of his 60th

birthday, Manuel Kauers, Christian Krattenthaler, and Thomas Müller developed a deep and inge-

nious method for the determination of holonomic sequences modulo powers of 2 (with applications

to group theory!). This has been extended to powers of 3 in [KM1], and a different method for

obtaining congruences was developed in [KM2].

An important subclass of the class of holonomic integer sequences is the class of integer sequences

whose (ordinary) generating function, let’s call it f(x), satisfies an algebraic equation of the form

P (f(x), x) = 0 where P is a polynomial of two variables with integer coefficients. For this class,

and an even wider class, the sequences arising from the diagonals of rational functions of several

variables, Rowland and Yassawi ([RY]) developed a very general method for computing finite

automata for the fast computation (once the automaton is found, of course) of the congruence

behavior modulo prime powers. Of course, as the primes and/or their powers get larger, the

automata get larger too, but if the automaton is precomputed once and for all (and saved!), it

is logarithmic time (i.e. linear in the bit-size). Of course, the implied constant in the O(log n)

computation times gets larger with the moduli.

History

Many papers, in the past, proved isolated results about congruence properties for specific sequences

and for specific moduli. We refer the reader to [RY] for many references, that we will not repeat

here.

The Present Method: Using Constant Terms

Most (perhaps all) of the combinatorial sequences treated in [RY] can be written in the form

an := ConstantTermOf [P (x)nQ(x)] ,

where both P (x) and Q(x) are Laurent polynomials with integer coefficients, where x is either a

single variable or a multi-variable x = (x1, . . . , xm), and ConstantTermOf means “coefficient of

x0 ”, or “the coefficient of x01 · · ·x0m ”.

For example, the arguably second-most famous combinatorial sequence (after the Fibonacci se-

quence), is the sequence of the Catalan Numbers (http://oeis.org/A000108), that may be defined

by

Cn := ConstantTermOf [(
1

x
+ 2 + x)n(1− x)] .

3

Not as famous, but also popular, are the Motzkin numbers (http://oeis.org/A001006), that

may be defined by

Mn := ConstantTermOf [(
1

x
+ 1 + x)n(1− x2)] ,

and also fairly famous are the Central Delannoy Numbers (http://oeis.org/A001850), that

may be defined by

Dn := ConstantTermOf [(
1

x
+ 3 + 2x)n] .

So far, we got away with a single variable.

Another celebrated sequence is the sequence of Apéry Numbers, that were famously used by 64-

year-old Roger Apéry (in 1978) to prove the irrationality of ζ(3). These are defined in terms of a

binomial coefficient sum

A(n) :=

n∑
k=0

(
n

k

)2(
n+ k

k

)2

.

These may be equivalently defined (see below) as

A(n) := ConstantTermOf

[(
(1 + x1) (1 + x2) (1 + x3) (1 + x2 + x3 + x2x3 + x1x2x3)

x1x2x3

)n]
.

How to convert ANY Binomial Coefficient Sum into a Constant Term Expression?

Before describing our new method, let us indicate how any binomial coefficient sum of the form

A(n) =

n∑
k=0

(
n

k

)
gk

m∏
i=1

(
ain+ bik + ci
din+ eik + fi

)
,

where all the ai, bi, ci, di, ei, fi and g are integers, can be made into a constant term expression.

(This is essentially Georgy Petrovich EGORYCHEV’s celebrated method of coefficients). We in-

troduce m variables x1, . . . , xm and use the fact, that, by definition(
ain+ bik + ci
din+ eik + fi

)
= ConstantTermOfxi

[
(1 + xi)

ain+bik+ci

xdin+eik+fii

]

Hence

A(n) =

n∑
k=0

(
n

k

)
gk

m∏
i=1

(
ain+ bik + ci
din+ eik + fi

)

=

n∑
k=0

(
n

k

)
gk

m∏
i=1

ConstantTermOfxi
[

(1 + xi)
ain+bik+ci

xdin+eik+fii

]

= ConstantTermOfx1,...,xm

[
n∑
k=0

(
n

k

)
gk

m∏
i=1

(1 + xi)
ain+bik+ci

xdin+eik+fii

]

4

= ConstantTermOfx1,...,xm

[(
m∏
i=1

(1 + xi)
ain+ci

xdin+fii

)
n∑
k=0

(
n

k

)
gk

m∏
i=1

(
(1 + xi)

bik

xeiki

)]

= ConstantTermOfx1,...,xm

[(
m∏
i=1

(1 + xi)
ain+ci

xdin+fii

)
n∑
k=0

(
n

k

)
gk

m∏
i=1

(
(1 + xi)

bi

xeii

)k]

= ConstantTermOfx1,...,xm

[
m∏
i=1

(
(1 + xi)

ain+ci

xdin+fii

)(
1 + g

m∏
i=1

(1 + xi)
bi

xeii

)n]
.

= ConstantTermOfx1,...,xm

[
m∏
i=1

(
(1 + xi)

ci

xfii

)(
(1 + xi)

ai

xdii

)n(
1 + g

m∏
i=1

(1 + xi)
bi

xeii

)n]
.

= ConstantTermOfx1,...,xm

[
m∏
i=1

(1 + xi)
ci

xfii

((
m∏
i=1

(1 + xi)
ai

xdii

)(
1 + g

m∏
i=1

(1 + xi)
bi

xeii

))n]
.

This is implemented in procedure BinToCT(L,x,a) in our Maple package AutoSquared. For exam-

ple, we got the above constant-term rendition of the Apéry numbers by typing:

BinToCT([[[1,0,0],[0,1,0]], [[1,1,0],[0,1,0]]$2],x,1); .

Illustrating the Constant Term Approach In Terms of the Simplest-Not-Entirely-

Trivial Example

Recall from above that the Catalan numbers may be defined by the constant-term formula

Cn := ConstantTermOf [(
1

x
+ 2 + x)n(1− x)] .

We are interested in the mod 2 behavior of Cn, in other words we want to have a quick way of

computing Cn modulo 2. So let’s define

A1(n) := Cn mod 2 .

Using the above formula for Cn, and taking it modulo 2, we have:

A1(n) := ConstantTermOf [(1 + x)(
1

x
+ x)n] .

We will try to find a constant-term expression for A1(2n) .

A1(2n) = ConstantTermOf [(1+x)(
1

x
+x)2n] mod 2 = ConstantTermOf [(1+x)((

1

x
+x)2)n] mod 2

= ConstantTermOf [(1+x)(
1

x2
+2+x2)n] mod 2 = ConstantTermOf [(1+x)(

1

x2
+x2)n] mod 2

But

ConstantTermOf [(1 + x)(
1

x2
+ x2)n] = ConstantTermOf [1 · (1

x2
+ x2)n] ,

5

since, obviously,

ConstantTermOf [x · (1

x2
+ x2)n] = 0 .

Since the constant-termand of

ConstantTermOf [1 · (1

x2
+ x2)n] ,

only depends on x2, we can replace x2 by x, implying that

A1(2n) = ConstantTermOf [(
1

x
+ x)n] mod 2 .

This forces us to put up with a new kid on the block, let’s call it A2(n):

A2(n) := ConstantTermOf [(
1

x
+ x)n] mod 2 ,

and we got the recurrence

A1(2n) = A2(n) .

We will handle A2(n) in due course, but first let’s consider A1(2n+ 1).

We have

A1(2n+ 1) = ConstantTermOf [(1 + x)(
1

x
+ x)2n+1] mod 2

= ConstantTermOf [(1 + x)(
1

x
+ x)((

1

x
+ x)2)n] mod 2

= ConstantTermOf [(
1

x
+ x+ 1 + x2)(

1

x2
+ 2 + x2)n] mod 2

= ConstantTermOf [(
1

x
+ x+ 1 + x2)(

1

x2
+ x2)n] mod 2 .

But

ConstantTermOf [(
1

x
+ x+ 1 + x2)(

1

x2
+ x2)n] = ConstantTermOf [(1 + x2) · (1

x2
+ x2)n] ,

since, obviously

ConstantTermOf [(
1

x
+ x) · (1

x2
+ x2)n] = 0 .

Since the constant-termand of

ConstantTermOf [(1 + x2) · (1

x2
+ x2)n] ,

only depends on x2, we can replace x2 by x, implying that

A1(2n+ 1) = ConstantTermOf [(1 + x)(
1

x
+ x)n] mod 2 .

6

But this looks familiar! It is good-old A1(n), so we have established, so far, that

A1(2n) = A2(n) , A1(2n+ 1) = A1(n) .

But in order to establish a recurrence scheme, we need to handle A2(n). A priori, this may

force us to introduce yet more discrete functions, and that would be OK, as long as we would

finally stop, after finitely many steps, getting a scheme with finitely many discrete functions, that

would enable the fast (logarithmic time) computation of our initial function A1(n). We will see

that this would always be the case, no matter how complicated P (x) and Q(x) are (and even

with many variables). Alas, as P (x) gets more complicated, the ‘finite’ gets bigger and bigger, so

eventually the ‘logarithmic time’ in n would be impractical, since the implied constant would be

eeeeeeeeeeeeenormous.

But in this toy example, don’t worry! The ‘finitely many discrete functions’, is only two! As we

will shortly see, all we need is A2(n), in addition to A1(n).

Recall that

A2(n) := ConstantTermOf [(
1

x
+ x)n] mod 2 .

Let’s try to find a constant-term expression for A2(2n) .

A2(2n) = ConstantTermOf [(
1

x
+ x)2n] mod 2 = ConstantTermOf [((

1

x
+ x)2)n] mod 2

= ConstantTermOf [(
1

x2
+ 2 + x2)n] mod 2 = ConstantTermOf [(

1

x2
+ x2)n] mod 2

Since the constant-termand only depends on x2, we can replace x2 by x, implying that

A2(2n) = ConstantTermOf [(
1

x
+ x)n] mod 2 .

But that’s exactly A2(n), so we have found out that

A2(2n) = A2(n) .

What about A2(2n+ 1)? Here goes:

A2(2n+1) = ConstantTermOf [(
1

x
+x)2n+1] mod 2 = ConstantTermOf [(

1

x
+x)((

1

x
+x)2)n] mod 2

= ConstantTermOf [(
1

x
+x)(

1

x2
+2+x2)n] mod 2 = ConstantTermOf [(

1

x
+x)(

1

x2
+x2)n] mod 2 .

But the constant-termand now only has odd powers, so the coefficient of x0, alias the constant

term, is 0. We have just established, the fast recurrence scheme:

A1(2n) = A2(n) , A1(2n+ 1) = A1(n) ,

7

A2(2n) = A2(n) , A2(2n+ 1) = 0 ,

subject to the initial conditions

A1(0) = 1 , A2(0) = 1 .

[The above human-generated scheme can be also done (much faster) by the Maple package

AutoSquared. Having downloaded http://www.math.rutgers.edu/~zeilberg/tokhniot/AutoSquared

into your computer, that has Maple installed, you stay in the same directory, and you type:

read AutoSquared: CA([1/x+2+x,1-x],x,2,1,2)[1]; ,

and you would get (in 0 seconds!), the output

[[[2, 1], [2, 0]], [1, 1]] ,

which is our package’s way of encoding the above ‘scheme’.

Another way of describing the scheme is via the binary representation of n (for some k ≥ 1)

n =

k∑
i=1

αi2
k−i ,

where αi ∈ {0, 1}, α1 = 1, and it is abbreviated, in the positional notation, as a word, of length

k, in the alphabet {0, 1}
α1 · · ·αk .

Phrased in terms of such ‘words’, the above scheme can be written, (where w is any word in the

alphabet {0, 1})
A1(w0) = A2(w) , A1(w1) = A1(w) .

A2(w0) = A2(w) , A2(w1) = 0 ,

subject to the initial conditions (here φ is the empty word):

A1(φ) = 1 , A2(φ) = 1 .

Let’s revert to post-fix notation for representing functions, and omit the parentheses, i.e. write wA1

instead of A1(w) and wA2 instead of A2(w). This will not cause any ambiguity, since the alphabet

of function names, {A1, A2} is disjoint from the alphabet of letters, {0, 1}. The above scheme

becomes

w0A1 = wA2 , w1A1 = wA1

w0A2 = wA2 , w1A2 = 0 ,

subject to the initial conditions

φA1 = 1 , φA2 = 1 .

8

Let’s try to find A1(30), alias, A1(111102), alias, with our new convention, 11110A1. We get in

two steps

11110A1 = 1111A2 = 0 .

This only took two steps due to a premature exit to an output gate. The default number of steps is

the length of the word, that keeps traveling until it becomes the empty word, and then it is forced

to move to an output gate.

It is readily seen that if the input word has a zero in it, the output would be 0. Hence the only

words that output 1 are those given by the regular expression

1∗ .

Equivalently, the only integers n for which the Catalan number Cn is odd are those of the form

n = 2k − 1 for k = 0, 1, 2,

The words in the alphabet {0, 1} that output 0 (i.e. those words that have at least one 0 in their

binary representation) are the complement ‘language’, whose regular expression rendition is

1 {0, 1}∗ 0 {0, 1}∗ .

What we have here is a finite automaton with output. The set of states is {A1, A2} while the

alphabet is the set {0, 1}. There are 2 directed edges coming out of each state, one for each letter

of the alphabet, leading to another (possibly the same) state, or possibly to an output gate (in our

case always 0, via ‘exit edges’ that prematurely end the journey. You have a starting state (in this

example, A1) and an input word, and you travel along the automaton, according to the current

state and the current rightmost letter, until you run out of letters, i.e. have the empty word, or

wind-up in the output 0 prematurely, since some states have edges that lead directly to 0. (In our

example when you are at state A2 and the rightmost letter is 1 you immediately output 0.)

Yet another way of describing it is via a type-three grammar (aka regular grammar) in the

famous Chomsky hierarchy (see e.g. [R]). For each possible output (in this example, 0 and 1,

NOT TO BE CONFUSED WITH THE LETTERS OF THE ALPHABET), there is a

regular grammar describing the language (set of words) that yield that output.

In this example, the set of non-terminal symbols is {A1, A2} and the set of terminal symbols

is {0, 1}. For a grammar for the language yielding 1 (i.e. the binary representations of the integers

n for which Cn is odd) the non-terminal symbol A2 is not needed (is superfluous), and the grammar

is extremely simple

A1 → φ , A1 → 1A1 .

We leave it to the interested reader to write down the only slightly more complicated grammar for

the language of binary representations of integers n for which Cn is even.

9

It is well-known that the notions of finite automata, regular expressions, and regular grammars are

equivalent (as far as the generated languages), and there are easy algorithms for going between

them.

These are all very nice, but for the present formulation, it is more convenient not to write the

input integers n in base 2 (or more generally, base p, if the desired modulus is a power of a prime

p), but stick to integers (as inputs). Let’s make the following formal definition.

Definition: Let N be the set of non-negative integers, let p be a positive integer, and let E be any

set. An automatic p-scheme for a function f : N → E is a set of finitely many (say r) auxiliary

functions A1(n), . . . , Ar(n), where f(n) = A1(n) and there is a function

σ : {0, . . . , p− 1} × {1, . . . , r} → {1, . . . , r} ,

such that, for each 1 ≤ i ≤ r and 0 ≤ α ≤ p− 1, we have the recurrence

Ai(pn+ α) = Aσ(α,i)(n) .

We also have initial conditions

Ai(0) = ai ,

for some ai ∈ E , 1 ≤ i ≤ r.

Note: In the application to schemes for congruence properties of combinatorial sequences modulo

prime powers pa, treated in the present article, p will always be a prime, and the output set, E,

would be

{0, 1, . . . , pa − 1} .

Teaching the Computer How to Create Automatic p-schemes

All the tricks described above, in excruciating detail, for finding the scheme for determining the

mod 2 behavior of the Catalan numbers

Cn := ConstantTermOf [(
1

x
+ 2 + x)n(1− x)] ,

can be taught to the computer (in our case using the symbolic programming language Maple), to

find without human touch, an automatic p-scheme for determining the mod pa behavior, for any

prime p, and any power a, for any combinatorial sequence defined by

A(n) := ConstantTermOf [P (x1, . . . , xm)nQ(x1, . . . , xn)] mod pa ,

for any polynomials with integer coefficients, P (x1, . . . , xm) and Q(x1, . . . , xm), for any number

of variables.

We will associate A(n) with the pair [P,Q].

10

We first rename A(n), A1(n), and [P,Q], [P1, Q1]. We then try to find constant-term expressions

for A1(np), A1(np+ 1), . . . , A1(np+ p− 1). After using the multinomial theorem and doing it mod

pa, we would get, e.g.,

A1(pn) = ConstantTermOf [P1(x1, . . . , xm)npQ1(x1, . . . , xm)] mod pa

= ConstantTermOf [(P1(x1, . . . , xm)p)nQ1(x1, . . . , xm)] mod pa ,

that after simplification (expanding, taking modulo pa, and, if applicable, replacing xp by x) will

force us to put up with a brand-new discrete function, let’s call it A2(n), given by

A2(n) = ConstantTermOf [P2(x1, . . . , xm)nQ2(x1, . . . , xm)] mod pa ,

So A2 corresponds to a brand-new pair [P2, Q2]. We do likewise for A1(pn + 1), all the way to

A1(pn + p − 1), getting (at the beginning) new pairs. Then we do the same for A2(pn) through

A2(pn+p−1). After awhile, by the pigeonhole principle, we will get old friends, and eventually

there won’t be any ‘new guys’, and we get a finite (alas, often very large!) automatic p-scheme.

The proof is as follows. If P (x) is a Laurent polynomial in xp1, . . . , x
p
m, let Λ(P (x)) denote the

Laurent polynomial obtained by replacing each xpj by xj . Since Λ commutes with raising to the pth

power, the first component of each pair [Pi, Qi] after a iterations is Λk(P (x)p
a

) for some k ≥ 0. The

only terms of P (x)p
a

whose coefficients are non-zero modulo pa are those in which the exponent

of each xj is a multiple of p; therefore k ≥ 1. It is not too difficult to see (for example, using

Proposition 1.9 in [RY]) that

Λ
(
P (x)p

a
)
≡ P (x)p

a−1

(mod pa).

From this it follows that

Λk
(
P (x)p

a
)
≡ Λk−1

(
P (x)p

a−1
)

(mod pa).

On the next iteration, we raise this polynomial to the pth power and apply Λ; this gives

Λ
((

Λk−1(P (x)p
a−1

)
)p)

mod pa = Λk
(
P (x)p

a
)

mod pa = Λk−1
(
P (x)p

a−1
)

mod pa,

so the first component of [Pi, Qi] stays the same after a iterations. There are only finitely many

possibilities for the second component as well, since after the first component stabilizes then we

can apply Λ to both P and (after deleting some terms) Q at each iteration, and this puts bounds

on the degree and low-degree of Q.

All of this is implemented in AutoSquared by procedure CA for single-variable polynomials P and

Q and by procedure CAmul for multivariate P and Q (of course, CAmul can handle also a single

variable, but we kept CA both for old-time-sake and because it may be a bit faster for this special

case).

The syntax is

11

CA(Z,x,p,a,K): ,

where Z is a pair of single-variable functions [P,Q], in the variable x, p is a prime, a is a positive

integer, and K is a (usually large) positive integer, stating the maximum number of ‘states’ (auxiliary

functions) that you are willing to put up with. (It returns FAIL if the number of states exceeds K.)

For example, to get an automatic 2-scheme for the Motzkin numbers, modulo 2, (if you are willing

to tolerate a scheme with up to 30 members),

you type: gu:=CA([1/x+1+x,1-x**2],x,2,1,30): .

The output (that we call gu) has two parts. The second part, gu[2], that is not needed for the

application for the fast determination of the sequence modulo 2 (and in general modulo pa) consists

in the ‘definition’, in terms of constant term expressions Ai(n) := ConstantTermOf [Pi(x)nQi(x)],

of the various auxiliary functions. So, in this example, gu[2] is

[[1/x+1+x, 1+x**2], [1/x+1+x, 1+x], [1/x+1+x, 1], [1/x+1+x, x]] ,

meaning that

A1(n) = ConstantTermOf [(1/x+1+x)n(1+x2)] , A2(n) = ConstantTermOf [(1/x+1+x)n(1+x)]

A3(n) = ConstantTermOf [(1/x+ 1 +x)n] , A4(n) = ConstantTermOf [(1/x+ 1 +x)n · x)] .

The more interesting part, the one needed for the actual fast computation, is gu[1].

Typing : lprint(gu[1]) in the same Maple session, gives

[[[2, 2], [3, 4], [3, 3], [0, 2]], [1, 1, 1, 0]] ,

that in humanese means the 2-scheme

A1(2n) = A2(n) , A1(2n+ 1) = A2(n) ,

A2(2n) = A3(n) , A2(2n+ 1) = A4(n) ,

A3(2n) = A3(n) , A3(2n+ 1) = A3(n) ,

A4(2n) = 0 , A4(2n+ 1) = A2(n) .

The initial conditions are

A1(0) = 1 , A2(0) = 1 , A3(0) = 1 , A4(0) = 0 .

Moving right along, to get an automatic 2-scheme for the Motzkin numbers mod 4 (let’s tolerate

from now on systems up to 10000 states):

gu:=CA([1/x+1+x,1-x**2],x,2,2,10000): ,

12

getting (by typing nops(gu[2]) (or nops(gu[1][1]))) a scheme with 24 states.

To get an automatic 2-scheme for the Motzkin numbers mod 8 (still with ≤ 10000 states, if possible),

you type

gu:=CA([1/x+1+x,1-x**2],x,2,3,10000): ,

getting a certain scheme with 128 states.

For mod 16, we type

gu:=CA([1/x+1+x,1-x**2],x,2,4,10000): ,

getting a certain scheme with 801 states.

For mod 32, we type

gu:=CA([1/x+1+x,1-x**2],x,2,5,10000): ,

getting a certain scheme with 5093 states.

For mod 64, we type

gu:=CA([1/x+1+x,1-x**2],x,2,6,10000); ,

getting the output FAIL, meaning that the number of needed states exceeds our ‘cap’, 10000.

Fast Evaluation mod pa

Once an automatic p-scheme, S, is found for a combinatorial sequence modulo pa, AutoSquared

can find very fast the N th term of the sequence modulo pa, for very large N , using the procedure

EvalLS(Z,N,i,p), with i = 1. For example, after first finding an automatic 5-scheme for the

Motzkin numbers modulo 25, by typing

gu:=CA([1/x+1+x,1-x**2],x,5,2,1000)[1]: ,

to get the remainder upon dividing M10100 by 25, you should type:

EvalCA(gu,10**100,1,5);

getting 12. To get the first N terms of the sequence (modulo pa), once a scheme, S, has been

computed, type:

SeqCA(S,N,p);

For example, with the above scheme (that we called gu) (for the Motzkin numbers modulo 25)

SeqCA(gu,100000,5);

13

takes 2.36 seconds to give you the first 100000 terms, and getting the first million terms, by typing

“SeqCA(gu,10**6,5);”, only takes 30 seconds.

Congruence Linear Schemes

The notion of automatic p-scheme defined above is conceptually attractive, since it can be modeled

by a finite automaton with output. But, as can be seen by the above example, the number of

‘states’ (auxiliary functions) grows very fast. But note that the space of polynomials modulo pa

is a nice module over the ring Z/(paZ), and it is a shame to not take advantage of it. So rather

than waiting until no new pairs [P (x), Q(x)] show up among the “children”, it may be a good idea,

whenever a new pair comes along, to see whether it can be expressed as a linear combination of

previously encountered pairs with the same P (x) (which we already know stays the same after a

iterations, and only the Q(x)’s change).

One can get away with many fewer auxiliary functions (‘states’) with the following notion.

Definition: Let N be the set of non-negative integers, and let p be a prime, a a positive integer,

and let M be a module over the ring of integers modulo pa, Z/(paZ). A linear p-scheme for a

function f : N → M is a set of finitely many (say r) auxiliary functions A1(n), . . . , Ar(n), where

f(n) = A1(n), and such that for each i (1 ≤ i ≤ r), and each α (0 ≤ α < p), there exists a linear

combination

Ai(pn+ α) =

r∑
j=1

C
(α)
i,j Aj(n) ,

for some C
(α)
i,j ∈ {0, 1, . . . , pa − 1}, and there are initial conditions:

Ai(0) = ai .

Note that the previous notion of automatic p-scheme is the very special case, where for each α and

i, there is exactly one j (that equals σ(α, i)) such that C
(α)
i,j is non-zero, and it has to be a 1.

Finding Linear p-Schemes in AutoSquared

This is implemented, in AutoSquared, by procedure LS for single-variable P and Q and by procedure

LSmul for multivariate P and Q (of course, LSmul can handle also a single variable, and we kept

LS both for old-time-sake and because it may be a bit faster for this special case).

The syntax for LS is

LS(Z,x,p,a,A,K):

where Z is a pair of single-variable functions [P,Q], x is the (single) variable name x that serves

as the argument of P and Q, p is a prime, a is a positive integer, A is a symbol for expressing

the linear expressions (where A[i] means our humanese Ai), and K is (usually fairly large) positive

integer, stating the maximum number of ‘states’ (auxiliary functions) that you are willing to put

up with. (It returns FAIL if the number of states exceeds K.)

14

For example, to get a Linear 2-scheme for the Motzkin numbers, modulo 2, (if you are willing to

tolerate a scheme with up to 30 members),

you type

gu:=LS([1/x+1+x,1-x**2],x,2,1,A,30): .

getting

[[[A[2], A[2]], [A[3], A[4]], [A[3], A[3]], [0, A[2]]], [1, 1, 1, 0]] ,

which is the same as the automatic 2-scheme, spelled-out above, except it is phrased more verbosely.

If you type:

LS([1/x+1+x,1-x**2],x,2,2,A,30)[1];

you would get the following linear 2-scheme with 8 states:

[[[A[2], A[8]], [A[3], A[7]], [A[4], A[5]], [A[4], A[6]],

[A[4], 2*A[3]+2*A[4]+3*A[5]], [3*A[4], 2*A[3]+2*A[4]+A[5]], [A[3]+A[4], A[2]+A[3]+A[4]],

[A[3], 3*A[2]+A[3]+A[4]+3*A[5]]],

[1, 1, 1, 1, 1, 3, 2, 1]] ,

that means that

A1(2n) = A2(n) , A1(2n+ 1) = A8(n) , . . . ,

A8(2n) = A3(n) , A8(2n+ 1) = 3A2(n) +A3(n) +A4(n) + 3A5(n) mod 4 .

The corresponding automatic 2-scheme has 24 states.

For modulo 8 we get 18 states, compared to 128 for the automatic 2-scheme. For modulo 16 we get

43 states, compared to 801 states, and for modulo 32 we get 96 states, compared to 5093 states.

Having gotten a scheme, S, phrased in terms of A, to get the first N terms of the sequence (modulo

pa), type

SeqLS(S,N,p,a,A) ;

Other Highlights of AutoSquared

Procedures BinCA and BinLS find automatic p-schemes and linear p-schemes respectively for any

binomial coefficient sum. See the on-line help.

As mentioned at the beginning, there are quite a few sample input and output files linked to from

the front of this article

15

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/meta.html .

What about congruences modulo integers that are NOT primes or prime powers?

The Chinese Remainder Theorem comes to the rescue!

One first constructs as many automatic p-schemes, or linear p-schemes, for as many prime powers

as one could afford, or care about, and then one can very fast find the congruence class modulo

any integer involving these primes up to the given power.

The Maple packages CatalanLS, MotzkinLS, DelannoyLS

Using the main package AutoSquared, our computer precomputed schemes for quite a few prime

powers, that enables us to find the remainder upon dividing by m, for many m, in particular,

m = 1000, getting the last three digits of the Catalan, Motzkin, and Delannoy numbers given at

the prologue.

See the on-line help in these packages.

Disclaimer

Both the automatic p-schemes and the linear p-schemes that our Maple package outputs are not

guaranteed to be minimal. Of course the size does not change the fact that they run in logarithmic

time in the input, but the ‘implied constants’ in the O(log n) algorithms are most probably not

best-possible.

Conclusion

The present project is yet another case study in teaching computers to do research all by them-

selves, once they were taught (programmed) the human tricks. Once the computer mastered them,

it can reproduce, in a few seconds, all the previous results accomplished by humans, and go on

to output much deeper results, that no human, by himself, or herself, would be able to do, hence

getting, much deeper results. So the fact that the last three decimal digits of Mgoogol are 187, may

not be as interesting as Fermat’s Last Theorem, but is, in some sense, much deeper!

Acknowledgment: The second-named author (DZ) was supported in part by a grant from the

National Science Foundation of the United States of America. The authors thank Shalosh B. Ekhad

for its many diligent and tedious computations and proofs!

References

[KKM] Manuel Kauers, Christian Krattenthaler, and Thomas W. Müller, A method for determining

the mod-2k behaviour of recursive sequences, with applications to subgroup counting, Electron. J.

Combin. 18(2) (2012), Article P37. http://arxiv.org/abs/1107.2015

[KM1] Christian Krattenthaler and Thomas W. Müller, A method for determining the mod-3k be-

16

haviour of recursive sequences, preprint. http://www.mat.univie.ac.at/~kratt/artikel/3psl2z.html

[KM2] Christian Krattenthaler and Thomas W. Müller, A Riccati differential equation and free

subgroup numbers for lifts of PSL2(Z) modulo powers of primes, J. Combin. Theory Ser. A 120

(2013), 2039–2063. http://arxiv.org/abs/1211.2947

[R] György E. Révész, Introduction to Formal Languages, Dover, 1991. [Originally published by

McGraw-Hill, 1983].

[RY] Eric Rowland and Reem Yassawi, Automatic congruences for diagonals of rational functions

http://arxiv.org/abs/1310.8635 .

Eric Rowland, LaCIM, Université du Québec à Montréal, Montréal, Canada.

rowland at lacim dot ca

Doron Zeilberger, Mathematics Department, Rutgers University (New Brunswick), Piscataway, NJ

08854, USA.

zeilberg at math dot rutgers dot edu

Nov. 18, 2013

17

